Περιγραφή: |
Συγγραφέας: Γαζή Σταυρούλα
Λέξεις Κλειδιά: Γραμμικά μοντέλα χρονοσειρών, Αυτοσυσχέτιση σε μοντέλα χρονοσειρών
Σύνοψη: Ο σκοπός αυτής της μεταπτυχιακής εργασίας είναι διπλός και συγκεκριμένα αφορά στη μελέτη του απλού / γενικευμένου πολλαπλού μοντέλου παλινδρόμησης όταν σε αυτό παραβιάζεται μια από τις συνθήκες των Gauss-Markov και πιο συγκεκριμένα όταν, Cov{ε_i,ε_j }≠0, ∀ i≠j και στην ανάλυση χρονοσειρών. Αρχικά, γίνεται συνοπτική αναφορά στο απλό και στο πολλαπλό γραμμικό μοντέλο παλινδρόμησης, στις ιδιότητες καθώς και στις εκτιμήσεις των συντελεστών παλινδρόμησης. Περιγράφονται οι ιδιότητες των τυχαίων όρων όπως μέση τιμή, διασπορά, συντελεστές συσχέτισης κ.α., εφόσον υπάρχει παραβίαση της ιδιότητας της συνδιασποράς αυτών. Τέλος, περιγράφεται ο έλεγχος για αυτοσυσχέτιση των τυχαίων όρων των Durbin-Watson καθώς και μια ποικιλία διορθωτικών μέτρων με σκοπό την εξάλειψή της. Στο δεύτερο μέρος, αρχικά αναφέρονται βασικές έννοιες της θεωρίας των χρονοσειρών. Στη συνέχεια, γίνεται ανάλυση διαφόρων στάσιμων χρονοσειρών και συγκεκριμένα, ξεκινώντας από το λευκό θόρυβο, παρουσιάζονται οι χρονοσειρές κινητού μέσου (ΜΑ), οι αυτοπαλινδρομικές χρονοσειρές (ΑR), οι χρονοσειρές ARMA, καθώς και η γενική περίπτωση μη στάσιμων χρονοσειρών, των ΑRΙΜΑ χρονοσειρών και παρατίθενται συνοπτικά τα πρώτα στάδια ανάλυσης μιας χρονοσειράς για κάθε μια από τις περιπτώσεις αυτές. Η εργασία αυτή βασίστηκε σε δύο σημαντικά βιβλία διακεκριμένων επιστημόνων, του κ. Γεώργιου Κ. Χρήστου, Εισαγωγή στην Οικονομετρία και στο βιβλίο των John Neter, Michael H. Kutner, Christofer J. Nachtsheim και William Wasserman, Applied Linear Regression Models.
Αρχείο Διπλωματικής Εργασίας |