Περιγραφή: |
Συγγραφέας: Τζετζούμης Ευάγγελος
Λέξεις Κλειδιά: Έμπειρα συστήματα, Εξαγωγή κανόνων κατηγοριοποίησης, Ακολουθιακή κάλυψη, Συντελεστές βεβαιότητας, Αυτόματη παραγωγή έμπειρων συστημάτων, Αλγόριθμοι μηχανικής μάθησης
Σύνοψη: Σκοπός της παρούσας εργασίας είναι η σύγκριση διαφόρων μεθόδων κατηγοριοποίησης που στηρίζονται σε αναπαράσταση γνώσης με κανόνες μέσω της δημιουργίας έμπειρων συστημάτων από γνωστά σύνολα δεδομένων. Για την εφαρμογή των μεθόδων και τη δημιουργία και υλοποίηση των αντίστοιχων έμπειρων συστημάτων χρησιμοποιούμε διάφορα εργαλεία όπως: (α) Το ACRES, το οποίο είναι ένα εργαλείο αυτόματης παραγωγής έμπειρων συστημάτων με συντελεστές βεβαιότητας. Οι συντελεστές βεβαιότητος μπορούν να υπολογίζονται κατά δύο τρόπους και επίσης παράγονται δύο τύποι έμπειρων συστημάτων που στηρίζονται σε δύο διαφορετικές μεθόδους συνδυασμού των συντελεστών βεβαιότητας (κατά MYCIN και μιας γενίκευσης αυτής του MYCIN με χρήση βαρών που υπολογίζονται μέσω ενός γενετικού αλγορίθμου). (β) Το WEKA, το οποίο είναι ένα εργαλείο που περιέχει αλγόριθμους μηχανικής μάθησης. Συγκεκριμένα, στην εργασία χρησιμοποιούμε τον αλγόριθμο J48, μια υλοποίηση του γνωστού αλγορίθμου C4.5, που παράγει δένδρα απόφασης, δηλ. κανόνες. (γ) Το CLIPS, το οποίο είναι ένα κέλυφος για προγραμματισμό με κανόνες. Εδώ, εξάγονται οι κανόνες από το δέντρο απόφασης του WEKA και υλοποιούνται στο CLIPS με ενδεχόμενες μετατροπές. (δ) Το FuzzyCLIPS, το οποίο επίσης είναι ένα κέλυφος για την δημιουργία ασαφών ΕΣ. Είναι μια επέκταση του CLIPS που χρησιμοποιεί ασαφείς κανόνες και συντελεστές βεβαιότητος. Εδώ, το έμπειρο σύστημα που παράγεται μέσω του CLIPS μετατρέπεται σε ασαφές έμπειρο σύστημα με ασαφοποίηση κάποιων μεταβλητών. (ε) Το GUI Ant-Miner, το οποίο είναι ένα εργαλείο για την εξαγωγή κανόνων κατηγοριοποίησης από ένα δοσμένο σύνολο δεδομένων. με τη χρήση ενός μοντέλου ακολουθιακής κάλυψης, όπως ο αλγόριθμος AntMiner. Με βάση τις παραπάνω μεθόδους-εργαλεία δημιουργήθηκαν έμπειρα συστήματα από πέντε σύνολα δεδομένων κατηγοριοποίησης από τη βάση δεδομένων UCI Machine Learning Repository. Τα συστήματα αυτά αξιολογήθηκαν ως προς την ταξινόμηση με βάση γνωστές μετρικές (ορθότητα, ευαισθησία, εξειδίκευση και ακρίβεια). Από τη σύγκριση των μεθόδων και στα πέντε σύνολα δεδομένων, εξάγουμε τα παρακάτω συμπεράσματα: (α) Αν επιθυμούμε αποτελέσματα με μεγαλύτερη ακρίβεια και μεγάλη ταχύτητα, θα πρέπει μάλλον να στραφούμε στην εφαρμογή WEKA. (β) Αν θέλουμε να κάνουμε και παράλληλους υπολογισμούς, η μόνη εφαρμογή που μας παρέχει αυτή τη δυνατότητα είναι το FuzzyCLIPS, θυσιάζοντας όμως λίγη ταχύτητα και ακρίβεια. (γ) Όσον αφορά το GUI Ant-Miner, λειτουργεί τόσο καλά όσο και το WEKA όσον αφορά την ακρίβεια αλλά είναι πιο αργή μέθοδος. (δ) Σχετικά με το ACRES, λειτουργεί καλά όταν δουλεύουμε με υποσύνολα μεταβλητών, έτσι ώστε να παράγεται σχετικά μικρός αριθμός κανόνων και να καλύπτονται σχεδόν όλα τα στιγμιότυπα στο σύνολο έλεγχου. Στα σύνολα δεδομένων μας το ACRES δεν θεωρείται πολύ αξιόπιστο υπό την έννοια ότι αναγκαζόμαστε να δουλεύουμε με υποσύνολο μεταβλητών και όχι όλες τις μεταβλητές του συνόλου δεδομένων. Όσο πιο πολλές μεταβλητές πάρουμε ως υποσύνολο στο ACRES, τόσο πιο αργό γίνεται.
Αρχείο Διπλωματικής Εργασίας |