Περιγραφή: |
Συγγραφέας: Κωνσταντόπουλος Κωνσταντίνος
Λέξεις Κλειδιά: Διάσταση κάλυψης dim, Μικρή επαγωγική διάσταση ind, Μεγάλη επαγωγική διάσταση Ind
Σύνοψη: Η Θεωρία Διαστάσεων είναι από τους παλαιότερους κλάδους της Γενικής Τοπολογίας και μελετά, εκτός των άλλων, τη μικρή επαγωγική διάσταση ind, τη μεγάλη διάσταση Ind και την επονομαζόμενη διάσταση της κάλυψης dim. Οι πρώτοι που έδωσαν αποτελέσματα στη θεωρία διαστάσεων είναι οι Poincare, Brouwer και Lebesgue. Κατά την κατασκευή από τον Ρeano, μιας συνεχούς απεικόνισης από ένα τμήμα επί ενός τετραγώνου, προέκυψε το πρόβλημα: «το κατά πόσον ένα τμήμα και ένα τετράγωνο είναι ομοιόμορφα» και γενικότερα «εάν ο n- κύβος I^n είναι ομοιόμορφος με τον m-κύβο I^m για n διφορετικό του m». Το πρόβλημα αυτό λύθηκε από τον Brouwer [1911] αποδεικνύοντας ότι αν n διαφορετικό του m τότε οι I^n και I^m δεν είναι ομοιόμορφοι. Οι Urysohn [1922, 1925, 1926] και Menger [1923,1924] απέδειξαν με τις εργασίες τους, ότι η θεωρία διαστάσεων είναι μία ανεξάρτητη περιοχή της Γενικής Τοπολογίας. Αυτοί ανέπτυξαν και διατύπωσαν ανεξάρτητα τη θεωρία της μικρής επαγωγικής διάστασης ind για την κλάση των συμπαγών μετρικών χώρων. Αυτή η θεωρία αργότερα επεκτάθηκε για την κλάση των διαχωρίσιμων μετρικών χώρων από τους Tumarkin [1925, 1926] και Hurewicz [1927]. Σήμερα, οι διαστάσεις ορίζονται για οποιονδήποτε τοπολογικό χώρο. Σημειώνουμε ότι, στην κλάση των διαχωρίσιμων μετρικών χώρων, οι τρείς διαστάσεις συμπίπτουν. Δηλαδή: ind(X)=Ind(X)=dim(X), όπου X διαχωρίσιμος μετρικός χώρος. Σε μεγαλύτερη κλάση τοπολογικών χώρων αυτό δεν ισχύει, δηλαδή οι τρείς διαστάσεις διαφέρουν. Στην κλάση των μετρικών χώρων οι διαστάσεις Ind και dim συμπίπτουν. Δηλαδή, αν X μετρικός χώρος: Ind(X)=dim(X). Στην εργασία αυτή δίνουμε τον ορισμό της διάστασης κάλυψης dim, ισοδύναμες εκφράσεις των ορισμών των διαστάσεων και θεωρήματα υποχώρου – αθροίσματος και γινομένου, που αφορούν τη διάσταση αυτή.
Αρχείο Διπλωματικής Εργασίας |