Περιγραφή: |
Συγγραφέας: Βλάχου Αναστασία
Λέξεις Κλειδιά: Σολιτόνια, Σολιτονικές λύσεις, Σολιτονικές επιφάνειες, Βασικές έννοιες διαφορικής γεωμετρίας, Εξίσωση Sine-Gordon, Εξίσωση NLS, Μετασχηματισμός Bäcklund
Σύνοψη: Στόχος της παρούσας εργασίας είναι η σύνδεση της μοντέρνας θεωρίας σολιτονίων με την κλασική διαφορική γεωμετρία. Ειδικότερα, αρχίζουμε με ένα εισαγωγικό μέρος, όπου παραθέτουμε τις βασικές έννοιες που αφορούν: α) Τις λύσεις μη-γραμμικών μερικών διαφορικών εξισώσεων (ΜΔΕ) που ονομάζονται σολιτόνια (solitons) και β) Την γεωμετρία των ομαλών καμπυλών και επιφανειών του Ευκλείδειου χώρου). Ακολουθεί, το δεύτερο και κύριο μέρος, στο οποίο μελετάμε την σχέση τριών χαρακτηριστικών μη-γραμμικών εξισώσεων εξέλιξης, της εξίσωσης sine-Gordon, της τροποποιημένης εξίσωσης Korteweg de Vries (mKdV) και της μη γραμμικής εξίσωσης Schrödinger (NLS), με την θεωρία καμπυλών και επιφανειών. Αναλυτικότερα, στο πρώτο μέρος και πιο συγκεκριμένα στο πρώτο κεφάλαιο παρουσιάζουμε μια ιστορική αναδρομή στην έννοια του σολιτονίου. Στην συνέχεια αναζητούμε κυματικές-σολιτονικές λύσεις για τις εξισώσεις KdV και NLS. Κλείνουμε παραθέτοντας τις προϋποθέσεις κάτω από τις οποίες μια μη γραμμική εξίσωση είναι ολοκληρώσιμη. Επιλέγουμε να αναλύσουμε δύο από αυτές τις προϋποθέσεις, χρησιμοποιώντας συγκεκριμένα παραδείγματα, ενώ, για τις άλλες δύο, περιοριζόμαστε σε μια συνοπτική περιγραφή . Στο δεύτερο κεφάλαιο του εισαγωγικού μέρους γίνεται μια εκτενής αναφορά σε θεμελιώδεις έννοιες της διαφορικής γεωμετρίας. Πιο συγκεκριμένα, οι έννοιες αυτές σχετίζονται με την θεωρία καμπυλών και επιφανειών και για ορισμένες από αυτές παρουσιάζουμε κάποια αντιπροσωπευτικά παραδείγματα. Ακολουθεί το κύριο μέρος και ειδικότερα το πρώτο κεφάλαιο, στο οποίο, μελετώντας υπερβολικές επιφάνειες, καταλήγουμε σε ένα κλασικό μη γραμμικό σύστημα εξισώσεων. Είναι αυτό που οφείλουμε στον Bianchi και το οποίο ενσωματώνει τις εξισώσεις Gauss-Mainardi-Codazzi. Στην συνέχεια, περιοριζόμαστε στις ψευδοσφαιρικές επιφάνειες και έτσι καταλήγουμε στην εξίσωση sine-Gordon. Ακολουθεί η ενότητα 1.2, στην οποία βρίσκουμε τον μετασχηματισμό auto-Bäcklund για την εξίσωση sine-Gordon και περιγράφουμε την γεωμετρική διαδικασία για την κατασκευή ψευδοσφαιρικών επιφανειών. Στην ενότητα 1.3, χρησιμοποιώντας τον παραπάνω μετασχηματισμό Bäcklund, καταλήγουμε στο Θεώρημα Αντιμεταθετικότητας του Bianchi. Συνεχίζουμε με την ενότητα 1.4, στην οποία παρουσιάζουμε ψευδοσφαιρικές επιφάνειες, οι οποίες αντιστοιχούν σε σολιτονικές λύσεις της εξίσωσης sine-Gordon. Πιο αναλυτικά, στην υποενότητα 1.4.1 κατασκευάζουμε την ψευδόσφαιρα του Beltrami, η οποία αντιστοιχεί στην στάσιμη μονο-σολιτονική λύση. Στην υποενότητα 1.4.2 μελετάμε το ελικοειδές που δημιουργείται από την έλκουσα καμπύλη, δηλαδή την επιφάνεια Dini, την οποία και κατασκευάζουμε. Ακολουθεί η υποενότητα 1.4.3, όπου, χρησιμοποιώντας το θεώρημα μεταθετικότητας, καταλήγουμε στην λύση δύο-σολιτονίων για την εξίσωση sine-Gordon και συνεχίζουμε με την υποενότητα 1.4.4, όπου κατασκευάζουμε περιοδικές λύσεις των δύο-σολιτονίων γνωστές ως breathers. Στο δεύτερο κεφάλαιο μελετάμε την κίνηση συγκεκριμένων καμπυλών και επιφανειών, οι οποίες οδηγούν σε σολιτονικές εξισώσεις. Ειδικότερα, στην ενότητα 2.1 καταλήγουμε στην εξίσωση sine-Gordon μέσω της κίνησης μιας μη-εκτατής καμπύλης σταθερής καμπυλότητας ή στρέψης. Ακολουθεί η ενότητα 2.2, όπου η εξίσωση sine- Gordon προκύπτει ως η συνθήκη συμβατότητας για το 2 2 γραμμικό σύστημα AKNS. Στην συνέχεια, στην ενότητα 2.3 ασχολούμαστε με την κίνηση ψευδοσφαιρικών επιφανειών. Πιο συγκεκριμένα, στην υποενότητα 2.3.1 συνδέουμε την κίνηση μιας ψευδοσφαιρικής επιφάνειας με ένα μη αρμονικό μοντέλο πλέγματος, το οποίο ενσωματώνει την εξίσωση mKdV. Επιπλέον, στην υποενότητα 2.3.2 δείχνουμε ότι η καθαρά κάθετη κίνηση μιας ψευδοσφαιρικής επιφάνειας, παράγει το κλασικό σύστημα Weingarten. Ολοκληρώνουμε την ενότητα 2.3 με την κατασκευή των μετασχηματισμών Bäcklund τόσο για το μοντέλο πλέγματος, όσο και για το σύστημα Weingarten. Το κεφάλαιο κλείνει με την ενότητα 2.4, όπου μέσω της κίνησης μιας μη εκτατής καμπύλης μηδενικής στρέψης, καταλήγουμε στην εξίσωση mKdV. Στην συνέχεια μελετάμε την κίνηση των επιφανειών Dini και τελικά κατασκευάζουμε επιφάνειες που αντιστοιχούν στο τριπλά ορθογώνιο σύστημα Weingarten. Στο τρίτο και τελευταίο κεφάλαιο επικεντρωνόμαστε στην εξίσωση NLS. Πιο συγκεκριμένα, στην ενότητα 3.1 καταλήγουμε στην εξίσωση NLS μΆ έναν καθαρά γεωμετρικό τρόπο. Επιπλέον, κατασκευάζουμε επιφάνειες, οι οποίες αντιστοιχούν στην μονο-σολιτονική λύση της εξίσωσης NLS και παρουσιάζουμε γιΆ αυτές κάποιες γενικές γεωμετρικές ιδιότητες. Το κεφάλαιο 3 ολοκληρώνεται με την ενότητα 3.3 όπου αρχικά λαμβάνουμε ακόμη μια φορά την εξίσωση NLS, χρησιμοποιώντας την μελέτη στην κινηματική των Marris και Passman. Κλείνουμε και αυτό το κεφάλαιο με τον auto- Bäcklund μετασχηματισμό για την εξίσωση NLS και επιπλέον παρουσιάζουμε χωρικά περιοδικές λύσεις της, γνωστές ως smoke-ring (δαχτυλίδι-καπνού).
Αρχείο Διπλωματικής Εργασίας |