Διακεκριμένες Επιστημονικές Εργασίες Τμήματος Μαθηματικών
Εργασίες σε Επιστημονικά Συνέδρια
Εργασίες σε Επιστημονικά Περιοδικά
Διπλωματικές Εργασίες Μ.Δ.Ε - Διδακτορικές Διατριβές Τμήματος Μαθηματικών
Διπλωματικές Εργασίες Μ.Δ.Ε
Διδακτορικές Διατριβές
![]() ![]() ![]() Συγγραφέας: Ηλιοπούλου Μαρίνα
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Βιομαγνητικά ρευστά, Επίδραση μαγνητικόυ πεδίου, Βιομαγνητοϋδροδυναμική, Αριθμητικά σχήματα, Αλγόριθμος του Thomas, Μέθοδος ψευδομετάβασης, Μέθοδος line by line Σύνοψη: Η παρούσα εργασία εκπονήθηκε στο πλαίσιο Διπλωματικής διατριβής του Διατμηματικού Προγράμματος Μεταπτυχιακών Σπουδών «Μαθηματικά των Υπολογιστών και των Αποφάσεων» των Τμημάτων Μαθηματικού και Μηχανικών Η/Υ και Πληροφορικής του Πανεπιστημίου Πατρών. Το φυσικό πρόβλημα που μελετάμε είναι η Ροή Βιομαγνητικού Ρευστού σε Ανεύρυσμα υπό την επίδραση Μαγνητικού Πεδίου. Θεωρούμε το αίμα ως μαγνητικό ρευστό και υποθέτουμε πως συμπεριφέρεται ως ένα ηλεκτρικά αγώγιμο, ομογενές και μη ισόθερμο Νευτώνειο μαγνητικό ρευστό που παρουσιάζει παράλληλα ιδιότητες σιδηρομαγνητικού (ferrofluid) ή παραμαγνητικού υλικού. Οι βασικοί στόχοι της μελέτης είναι η παρουσίαση μίας μεθοδολογίας αριθμητικής επίλυσης και η μελέτη της επίδρασης του μαγνητικού πεδίου στην ροή του αίματος στην περιοχή του ανευρύσματος. Το φυσικό πρόβλημα που μελετάμε είναι αυτό που μελετήθηκε στην εργασία Ε. Ε. Tzirtzilakis, Biomagnetic Fluid Flow in an Aneurism Using FerroHydroDynamics Principles, Physics of Fluids, 27, 061902, 2015, με την επιπρόσθετη υιοθέτηση των αρχών της Μαγνητοϋδροδυναμικής λόγω της ηλεκτρικής αγωγιμότητας. Στο πρώτο κεφάλαιο, παραθέτουμε ορισμένες εισαγωγικές έννοιες γενικά περί μαγνητικών ρευστών. Ακόμα αναφερόμαστε στα Βιομαγνητικά Ρευστά και πιο συγκεκριμένα στο αίμα, την σύνδεσή του με τα μαγνητικά ρευστά, τις ροϊκές μαγνητικές ιδιότητες αυτού, καθώς επίσης και διάφορες σχετικές εφαρμογές στην Ιατρική. Στο δεύτερο κεφάλαιο, περιγράφουμε κάποια αριθμητικά εργαλεία τα οποία χρησιμοποιούμε κατά την επίλυση του προβλήματος. Αρχικά παρουσιάζουμε βασικά αριθμητικά σχήματα πεπερασμένων διαφορών με την βοήθεια των οποίων γίνεται η προσέγγιση μερικών παραγώγων. Επιπλέον αναφερόμαστε στα είδη των προβλημάτων όπως αυτά ταξινομούνται με βάση την μορφή διαφορικών εξισώσεων με μερικές παραγώγους που τα διέπουν καθώς και τις αντίστοιχες συνοριακές τους συνθήκες. Στην συνέχεια παρουσιάσουμε την μέθοδο διαδοχικών υπερχαλαρώσεων (Successive Over Relaxation - S.O.R.) η οποία είναι μια επαναληπτική μέθοδος που θα χρησιμοποιήσουμε για την επίλυση εξισώσεων του προβλήματος. Επιπροσθέτως παρουσιάζουμε τον αλγόριθμο του Thomas για την επίλυση αλγεβρικού συστήματος με τριδιαγώνιο πίνακα αγνώστων και μία επαναληπτική, μερικώς μη εκπεφρασμένη μεθοδολογία επίλυσης εξισώσεων με μερικές παραγώγους (line by line implicit method). Στο τρίτο κεφάλαιο παραθέτουμε την μαθηματική μοντελοποίηση του φυσικού προβλήματος που περιγράφεται από ένα συζευγμένο μη γραμμικό σύστημα διαφορικών εξισώσεων με μερικές παραγώγους που υπόκεινται σε κατάλληλες συνοριακές συνθήκες. Οι εξισώσεις αυτές μετασχηματίζονται με την εισαγωγή της ρευματική συνάρτησης και του στροβιλισμού. Στη συνέχεια εκτελούμε διάφορους μετασχηματισμούς του φυσικού χωρίου και του υπολογιστικού πλέγματος, κατασκευάζουμε τις συνοριακές συνθήκες και παρουσιάζουμε τον αλγόριθμο της αριθμητικής επίλυσης του προβλήματος. Τέλος, στο τέταρτο κεφάλαιο παραθέτουμε αποτελέσματα για διάφορες τιμές των παραμέτρων που σχετίζονται με το φυσικό πρόβλημα. Εκτελούμε συγκρίσεις μεταξύ ροής του ρευστού υπό την επίδραση μαγνητικού πεδίου σε σύγκριση με την απλή υδροδυναμική περίπτωση, δηλαδή της ροής του ρευστού χωρίς την παρουσία μαγνητικού πεδίου. Η επίδραση του μαγνητικού πεδίου στην ροή είναι σημαντική τόσο για το πεδίο ταχυτήτων όσο και για το πεδίο θερμοκρασίας. Παρουσιάζουμε επίσης την σημαντική επίδραση του συντελεστή τριβής και μεταφοράς θερμότητας στα τοιχώματα. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κάρλος Σταμάτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Γεννήτριες τυχαίων αριθμών, Ψευδοτυχαίοι αριθμοί, Τυχαίοι αριθμοί, Τυχαιότητα, Ανακάτεμα, Προσομοίωση Σύνοψη: Σκοπός της συγκεκριμένης πτυχιακής εργασίας αποτελεί η μελέτη, η ανάλυση, η διερεύνηση και η κατηγοριοποίηση των σημαντικότερων μεθόδων παραγωγής τυχαίων αριθμών. Σε πρώτο στάδιο, παρουσιάσθηκε μία ιστορική αναδρομή σχετικά με τους τυχαίους αριθμούς και αναφέρθηκαν οι σημαντικότερες εφαρμογές που αυτοί βρίσκουν εφαρμογή. Στη συνέχεια, προσδιορίστηκαν οι ιδιότητες που πρέπει να πληρούνται στις γραμμικές συμπτωτικές γεννήτριες καθώς και τα κυριότερα χαρακτηριστικά των υπόλοιπων γεννητριών. Εν συνεχεία, παρουσιάσθηκαν οι πιο γνωστές σουίτες στατιστικών τεστ που αξιοποιούνται πλέον από το σύνολο των σύγχρονων εταιριών, οι οποίες απαιτούν κάποιο επίπεδο τυχαιότητας στις εφαρμογές τους. Επιπλέον, στην εργασία συμπεριλήφθηκαν οι υλοποιήσεις που έγιναν στα υπολογιστικά περιβάλλοντα των Python, R και Matlab, προκειμένου να εξομοιωθεί η συμπεριφορά διαφόρων γεννητριών τυχαίων αριθμών και να εξετασθεί η συμπεριφορά τους με τα εκάστοτε στατιστικά κριτήρια. Τέλος, αναλύεται εις βάθος η υλοποίηση του τυχερού παιχνιδιού Draw Poker, με σκοπό την εξομοίωση του τρόπου λειτουργίας της με τη χρήση ψευδοτυχαίων αριθμών και την εξακρίβωση της ορθότητας και του επιπέδου εμπιστοσύνης σε μία τέτοιου είδους ντετερμινιστική εφαρμογή. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαδοπούλου Αργυρώ
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ηλεκτρονικές δεξιότητες, Εξ αποστάσεως εκπαίδευση Σύνοψη: Οι ραγδαίες τεχνολογικές εξελίξεις των τελευταίων ετών και μια σειρά επιπλέον λόγων όπως η οικονομική κρίση, η παγκοσμιοποίηση και οι υψηλοί δείκτες ανεργίας επηρέασαν τις δομές και τις απαιτήσεις στην αγορά εργασίας. Γενικότερα, παρατηρήθηκε στροφή των αγορών σε θέσεις εργασίας που χαρακτηρίζονται από μεγαλύτερη ένταση ικανοτήτων και δημιουργία πολλών θέσεων εργασίας στον τομέα των υπηρεσιών και της τεχνολογίας. Στην ταχύτητα αλλαγής του σκηνικού στον τομέα της απασχόλησης φάνηκε να μην μπορεί να ανταποκριθεί επαρκώς το εκπαιδευτικό σύστημα. Η προσαρμογή των διαδικασιών και των φιλοσοφιών των εκπαιδευτικών συστημάτων στις νέες απαιτήσεις της αγοράς εργασίας ήταν αργή δημιουργώντας τεράστια κενά στην προσφορά συγκεκριμένων προσόντων και δεξιοτήτων, κυρίως στον τομέα ΤΠΕ. Σε ευρωπαϊκό επίπεδο το παραπάνω πρόβλημα άρχισε να γίνεται αντιληπτό στις αρχές της χιλιετίας και έχοντας ως απώτερο σκοπό τη δημιουργία μιας ενιαίας Ευρωπαϊκής αγοράς ξεκίνησε μια σειρά δράσεων. Οι δράσεις αυτές στοχεύουν στην ανάπτυξη ικανοτήτων προσαρμοσμένων στις νέες απαιτήσεις της αγοράς εργασίας καταργώντας τα εθνικά σύνορα. Περιλαμβάνουν δημιουργία ευρωπαϊκών και εθνικών πλαισίων προσόντων, (συνδεδεμένων μεταξύ τους), προγράμματα συνεχούς επιμόρφωσης και κατάρτισης, προσανατολισμό των εκπαιδευτικών συστημάτων στα μαθησιακά αποτελέσματα και σεμινάρια απόκτησης ηλεκτρονικών ικανοτήτων. Οι νέες αυτές απαιτήσεις σε συνδυασμό με την εξέλιξη της τεχνολογίας είχαν ως επακόλουθο τη δημιουργία νέων μέσων και μεθόδων διδασκαλίας οι οποίες φαίνεται να καλύπτουν τις αδυναμίες των συμβατικών μορφών. Η ενίσχυση της εξ –αποστάσεως εκπαίδευσης και η αύξηση του αγοραστικού της κοινού ανάγκασαν του εκπαιδευτικούς φορείς να προσαρμοστούν στα νέα δεδομένα. Έτσι έχοντας ως βασική υποδομή τις πλατφόρμες ηλεκτρονικής μάθησης και τις υπηρεσίες του Web 2.0 η εξ-αποστάσεως εκπαίδευση έχει καθιερωθεί όχι μόνο στους εκπαιδευτικούς φορείς αλλά και στα επιχειρηματικά προγράμματα κατάρτισης εργαζομένων . Σκοπός της πτυχιακής αυτής εργασίας είναι ο σχεδιασμός και η δημιουργία ενός διαδικτυακού μαθήματος, στην πλατφόρμα ηλεκτρονικής μάθησης Moodle, με στόχο την ανάπτυξη ικανοτήτων για το επάγγελμα του “Προγραμματιστή Διαδραστικής Πολιτιστικής Εμπειρίας” όπως αυτές εμφανίζονται στο ευρωπαϊκό πλαίσιο προσόντων e-cf. Βασικός προσανατολισμός της πτυχιακής εργασίας είναι να εκμεταλλευτεί τα εργαλεία τεχνολογίας που προσφέρονται προκειμένου να δημιουργηθεί ένα ηλεκτρονικό μάθημα βασισμένο στα μαθησιακά αποτελέσματα και να συνδέσει μέσω της χρήσης του πλαισίου προσόντων την αγορά εργασίας με την εκπαίδευση. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Σαλτού Ελένη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Οπτικοποίηση, Αναπαραστάσεις μαθηματικών εννοιών, Ρητοί αριθμοί, Άρρητοι αριθμοί, Ομοιότητα πολυγώνων, Διδακτικό πείραμα Σύνοψη: Η διδακτική των μαθηματικών μελετά το πώς μαθαίνουν τα παιδιά τις μαθηματικές έννοιες και διαδικασίες, ποιές και γιατί δυσκολεύονται να κατανοήσουν, και με ποιο τρόπο μπορούν να υπερβούν τα όποια γνωστικά εμπόδια προκύπτουν, για να τις κατανοήσουν. Σκοπός της εργασίας αποτελεί η μελέτη για το πώς συμβάλλει η γεωμετρική αναπαράσταση αυτών των εννοιών και διαδικασιών τόσο στη διδασκαλία τους, όσο και στην κατανόησή τους. Στην παρούσα διπλωματική εργασία παρουσιάζεται ακριβώς μια τέτοια διαδρομή, μια διδακτική, μερικά καθοδηγούμενη επαγωγή: από μια ευκολότερα κατανοήσιμη έννοια (την ομοιότητα σχημάτων) σε μια αρκετά πιο αφηρημένη και δύσληπτη έννοια, για τις πρώτες τάξεις του Γυμνασίου, αυτή του άρρητου αριθμού. Η διπλωματική εργασία αποτελείται από δύο κύρια μέρη. Στο πρώτο μέρος γίνεται επισκόπηση της σχετικής βιβλιογραφίας, με ανάλυση των σημαντικότερων αποτελεσμάτων ερευνητικών εργασιών που ασχολούνται με τις γεωμετρικές αναπαραστάσεις στη διδασκαλία των αρρήτων, και αναφορά σε εργασίες από το χώρο της εκπαιδευτικής και γνωστικής ψυχολογίας, καίριας σημασίας για την κριτική ανάλυση της προς μελέτη έννοιας. Παράλληλα, περιγράφεται το διδακτικό μοντέλο της καθοδηγούμενης ανακάλυψης. Στο δεύτερο μέρος, αρχικά, γίνεται παρουσίαση της μεθοδολογίας της έρευνας, της σχολικής τάξης όπου έγινε το διδακτικό πείραμα και της μεθόδου συλλογής των δεδομένων. Στη συνέχεια, γίνεται ανάλυση των αποτελεσμάτων της πραγματοποιηθείσας έρευνας, με έμφαση στην ανάλυση των διαλόγων, τη διαδικασία σκέψης των μαθητών, στα προβλήματα που ανακύπτουν και τους δυνητικούς τρόπους επίλυσής τους. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Καραμέρος Παναγιώτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Αξία σε κίνδυνο, Αναμενόμενο έλλειμα Σύνοψη: Η ποσοτικοποίηση του κινδύνου της αγοράς μέσω της Αξίας σε Κίνδυνο (Value at Risk), αποτελεί ένα χρήσιμο εργαλείο ελέγχου για ένα χρηματοοικονομικό οργανισμό προκειμένου να διασφαλίζεται η επάρκεια ρευστότητας και η ασφάλεια των επενδύσεων. Ωστόσο, η μαθηματική μοντελοποίηση του κινδύνου για ένα χαρτοφυλάκιο αποτελεί ένα δύσκολο εγχείρημα. Στη παρούσα διπλωματική εργασία εξετάζονται τεχνικές εκτίμησης της Αξίας σε Κίνδυνο, που αποτελεί ένα σημαντικό μέτρο κινδύνου και βασίζεται στην κατανομή των αποδόσεων ενός χαρτοφυλακίου. Αρχικά, παρουσιάζονται οι κατηγορίες οικονομικού κινδύνου και ο ρόλος που παίζουν τα μέτρα κινδύνου. Εισάγονται οι έννοιες της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος (Expected Shortfall) και μελετώνται πιθανοί τρόποι εκτίμησης τους. Η μελέτη επικεντρώνεται σε δύο κατανομές από τη θεωρία ακραίων τιμών, τη Γενικευμένη Κατανομή Ακραίων Τιμών και τη Γενικευμένη Pareto. Για την εκτίμηση των παραμέτρων των κατανομών αυτών επιλέγονται δεδομένα σύμφωνα με δύο τεχνικές. Αυτές είναι η μέθοδος Μεγίστων ανά Περίοδο (Block Maxima) και η μέθοδος Κορυφών πάνω από Κατώφλι (Peaks Over Threshold), οι οποίες παρουσιάζονται αναλυτικά. Η εκτίμηση των παραμέτρων μπορεί να γίνει με τη κλασσική μέθοδο της μέγιστης πιθανοφάνειας, όμως εδώ χρησιμοποιούνται εναλλακτικά και μέθοδοι Monte Carlo και Markov Chain Monte Carlo, όταν το πρόβλημα αντιμετωπίστηκε με μία Μπεϋζιανή οπτική. Πιο συγκεκριμένα, χρησιμοποιήθηκε η μέθοδος της δειγματοληψίας σπουδαιότητας (Importance Sampling) και ο υβριδικός δειγματολήπτης Gibbs, δηλαδή ένας δειγματολήπτης Gibbs στον οποίο τουλάχιστον μια προσομοίωση από την πλήρη δεσμευμένη κατανομή έχει αντικατασταθεί από ένα βήμα Metropolis, καθώς δεν μπορεί να γίνει απευθείας προσομοίωση από αυτή λόγω της πολύπλοκης μορφής της. Τέλος, χρησιμοποιήθηκε και η μη παραμετρική μέθοδος Hill, ως εναλλακτική των εκτιμήσεων που γίνονται με βάση τη Γενικευμένη Pareto. Για την πειραματική μελέτη των τεχνικών εκτίμησης της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος που αναφέρθηκαν προηγουμένως, χρησιμοποιήθηκαν πραγματικά δεδομένα κίνησης τεσσάρων χρηματιστηριακών δεικτών και τεσσάρων χρηματιστηριακών προϊόντων (μετοχών). Τέλος, για την εφαρμογή αξιοποιήθηκαν πακέτα διαθέσιμα στη στατιστική γλώσσα προγραμματισμού R ενώ συμπληρωματικά δημιουργήθηκε κώδικας R όπου αυτό απαιτήθηκε. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Αστεριώτη Φωτεινή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Υπογραφή συστήματος, Συνεχόμενο k-από-τα-n σύστημα, Συνάρτηση αξιοπιστίας Σύνοψη: Στην παρούσα εργασία παρουσιάζεται μία μελέτη ενός σημαντικού εργαλείου για την επίλυση μίας σειράς προβλημάτων στην αξιοπιστία συστημάτων, το οποίο ονομάζεται υπογραφή συστήματος (system signature). Πιο συγκεκριμένα, στο πρώτο κεφάλαιο της εργασίας δίνονται εισαγωγικές έννοιες της Θεωρίας Αξιοπιστίας. Εισάγεται η έννοια του μονότονου συστήματος και χρησιμοποιείται η συνάρτηση δομής και οι ιδιότητές της, ως μέσο για την μελέτη της απόδοσης ενός συστήματος και την σύγκρισή του με ένα άλλο σύστημα. Στη συνέχεια, δίνονται οι σχέσεις υπολογισμού της συνάρτησης δομής με τη βοήθεια των ελαχίστων συνόλων διαδρομής (minimal path sets) και αποκοπής (minimal cut sets). Παρουσιάζεται επίσης, η αξιοπιστία ενός συστήματος μέσω της συνάρτησης δομής του, και δίνεται η έννοια του δυϊκού ενός συστήματος. Στο δεύτερο κεφάλαιο εισάγεται η έννοια της υπογραφής ενός μονότονου συστήματος αξιοπιστίας, η οποία ορίζεται με τη βοήθεια των διατεταγμένων χρόνων ζωής των συνιστωσών του. Στη συνέχεια, παρουσιάζονται οι υπογραφές γνωστών συστημάτων και ο τρόπος υπολογισμού τους. Δίνονται ακριβείς τύποι για τον υπολογισμό της συνάρτησης επιβίωσης, καθώς και άλλων χαρακτηριστικών ενός συστήματος, όπως είναι ο ρυθμός αποτυχίας. Επίσης, εισάγονται οι έννοιες της minimal και maximal υπογραφής ενός μονότονου συστήματος. Διατυπώνονται τρεις διαφορετικοί τρόποι σύγκρισης της απόδοσης μονότονων συστημάτων, τα αποτελέσματα των οποίων στηρίζονται στη διάταξη των διανυσμάτων των υπογραφών τους. Επιπλέον, χρησιμοποιείται η έννοια της υπογραφής για να μελετηθεί ένα παράδειγμα στοχαστικής σύγκρισης συστημάτων που βασίζονται στην αρχή του πλεονασμού. Το τρίτο κεφάλαιο επικεντρώνεται στην υπογραφή των συνεχόμενων k-από-τα-n συστημάτων αποτυχίας. Αρχικά, παρουσιάζονται αναδρομικές σχέσεις που έχουν δοθεί για τον υπολογισμό της υπογραφής των συστημάτων αυτών, καθώς και εκφράσεις μέσω συνδυαστικής ανάλυσης. Δίνονται, επίσης, σχέσεις για την αξιοπιστία των συνεχόμενων συστημάτων, ως μίξη των αξιοπιστιών των διατεταγμένων χρόνων ζωής των συνιστωσών τους μέσω της υπογραφής του συστήματος. Τέλος, παρουσιάζονται συνθήκες διατήρησης της ιδιότητας γήρανσης IFR των συνεχόμενων k-από-τα-n συστημάτων αποτυχίας και συγκρίσεις των χρόνων ζωής διαφόρων συνεχόμενων συστημάτων αξιοπιστίας. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Σουρμελίδης Αθανάσιος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Υπερκυκλικοί τελεστές, Γραμμικό χάος Σύνοψη: Είναι ευρέως διαδεδομένο ότι η έννοια του χάους συνδέεται με τη μη γραμμικότητα. Αυτό οφείλεται στο γεγονός ότι διαισθητικά περιμένουμε από μία γραμμική απεικόνιση να παρουσιάζει μία ̔ ̔ προβλέψιμη ̓ ̓ συμπεριφορά. Κάτι το οποίο όμως δεν αληθεύει. Πρώτος ο G.D. Birkhoff (1929) βρήκε ένα παράδειγμα ενός τελεστή με ένα σημαντικό στοιχείο του χάους: ο τελεστής είχε πυκνή τροχιά. Στη συνέχεια ακολούθησαν οι G.R. Maclane (1952) και S. Rolewisz (1969), οι οποιοί βρήκαν επιπλέον παραδείγματα τελεστών με πυκνή τροχιά. Παρακινούμενοι από αυτά τα παραδείγματα, πολλοί ερευνητές άρχισαν να μελετούν την έννοια του χάους υπό το πρίσμα της γραμμικότητας, ονομάζοντας τους τελεστές με πυκνή τροχιά υπερκυκλικούς. Το καθοριστικό βήμα έγινε από τους G. Godefroy και J.H. Shapiro (1991), οι οποίοι όχι μόνο ανακάλυψαν καινούργιες κλάσεις υπερκυκλικών τελεστών, αλλά πρότειναν επίσης να γίνει αποδεκτός ο ορισμός του (μη γραμμικου) χάους, που είχε δοθει από τον Devaney, ως ο ορισμός του γραμμικού χάους: ́Ενας τελεστής είναι χαοτικός αν: 1) έχει πυκνή τροχιά, 2) έχει ευαίσθητη εξάρτηση στις αρχικές συνθήκες, 3) το σύνολο των περιοδικών του σημείων είναι πυκνό. Σκοπός αυτής της εργασίας, η οποία βασίζεται στο βιβλίο Linear Chaos των Karl-G. Grosse- Erdmann και A.Peris Manguillot, είναι να γίνει μία εισαγωγή στη θεωρία των υπερκυκλικών τελεστών και ταυτόχρονα να παρουσιαστούν ορισμένα από τα πιο θεμελιώδη θεωρήματα της θεωρίας αυτής. Στο 1ο κεφάλαιο γίνεται μία εισαγωγή στη θεωρία των δυναμικών συστημάτων (όχι απαραίτητα γραμμικών) και παρουσιάζονται ορισμένα αποτελέσματα με βασικότερο αυτών, το θεώρημα του Birkhoff που δίνει μία συνθήκη ώστε μία απεικόνιση να έχει πυκνή τροχιά. Στο 2ο κεφάλαιο γίνεται η κατασκευή των χώρων Fr ́echet, που είναι μία γενίκευση των χώρων Banach και στη συνέχεια μεταφέρουμε τα αποτελέσματα του 1ου κεφαλαίου πάνω σε γραμμικά δυναμικά συστήματα. Στο 3ο κεφάλαιο παρουσιάζονται ορισμένα κριτήρια που αν ικανοποιεί ένας τελεστής, θα είναι υπερκυκλικός ή ακόμα και χαοτικός, με τελικό το κριτήριο Υπερκυκλικότητας. Στο 4ο κεφάλαιο παρουσιάζονται δύο από τα σπουδαιότερα θεωρήματα της θεωρίας των υπερκυκλικών τελεστών: 1)το θεώρημα της Ansari, 2)το θεώρημα των Bourdon-Feldmann. Στο 5ο κεφάλαιο παρουσιάζεται μία από τις πιο πρόσφατες έννοιες στη θεωρία των υπερκυκλικών τελεστών και που έχει γεννηθεί από την εργοδική θεωρία: αυτή της συχνής υπερκυκλικότητας. Τέλος, στο 6ο κεφάλαιο μελετάται η ύπαρξη κοινών υπερκυκλικών διανυσμάτων μίας υπερα- ριθμήσιμης οικογένειας τελεστών. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Ντοκομέ Αγλαΐα-Παρασκευή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ποιότητα, Συστήματα διασφάλισης ποιότητας, Εργασία Σύνοψη: Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η ανάλυση και η διερεύνηση παραγόντων, οι οποίοι διαμορφώνουν το περιβάλλον εργασίας με την εγκατάσταση συστημάτων διασφάλισης ποιότητας. Για την άντληση πληροφοριών και την εξαγωγή συμπερασμάτων έγιναν δομημένες συνεντεύξεις σε εργαζόμενους συγκεκριμένων επιχειρήσεων με συστήματα διασφάλισης ποιότητας. Στην αρχή της εργασίας γίνεται εισαγωγή σε σημαντικές έννοιες όπως η ποιότητα, τα συστήματα διασφάλισης ποιότητας καθώς τα πρότυπα. Στη συνέχεια, αναφέρεται η έννοια του προτύπου και οι αντίστοιχες απαιτήσεις. Περιγράφεται αναλυτικά η διαδικασία πιστοποίησης επιχειρήσεων και παρατίθονται τα οφέλη που προκύπτουν από αυτή. Στα τελευταία κεφάλαια της εργασίας παρουσιάζεται η επεξεργασία των δεδομένων, η ανάλυση των αποτελεσμάτων καθώς και η εξαγωγή των συμπερασμάτων της έρευνας. Εν συνεχεία πραγματοποιείται σχολιασμός σε σχέση με τα δεδομένα της βιβλιογραφικής έρευνας που έγινε στα προηγούμενα κεφάλαια . Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τσιφτιλή Μαρία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ποιότητα, Συστήματα διασφάλισης ποιότητας Σύνοψη: Σκοπός αυτής της διπλωματικής εργασίας είναι η όσο το δυνατόν καλύτερη προσέγγιση της έννοιας της Ποιότητας και των Συστημάτων Διαχείρισης Ποιότητας, έννοιες πολύ βασικές αναφορικά με την εργασιακή οργάνωση και συμπεριφορά. Η εργασία δομείται σε τέσσερα κύρια κεφάλαια καθένα από τα οποία πραγματεύεται ένα διαφορετικό θέμα. Πιο συγκεκριμένα, αρχικά παρατίθενται λεπτομέρειες για τις βασικές αρχές της σειράς ISO 9000 καθώς και για τα πρότυπα που αυτή περιλαμβάνει, στη συνέχεια αναλύεται το πρότυπο Διαχείρισης Ποιότητας ISO 9001, οι βασικές αρχές του και οι απαιτήσεις του, όπως και ο τρόπος με τον οποίo μια επιχείρηση μπορεί να εφαρμόσει ένα ευέλικτο Σύστημα Διαχείρισης Ποιότητας με σκοπό την ικανοποίηση του πελάτη και τη συνεχή βελτίωση. Τέλος γίνεται επεξεργασία των δεδομένων, τα οποία συλλέχθηκαν με τη βοήθεια ερωτηματολογίου και αναλύθηκαν με τη χρήση του στατιστικού πακέτου SPSS 20.00. Η εργασία ολοκληρώνεται με την εξαγωγή των συμπερασμάτων και την παράθεση της βιβλιογραφίας από όπου αντλήθηκαν οι κυρίαρχες πηγές για τη συγγραφή του παρόντος πονήματος. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Αντωνέλου Γεωργία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Εξόρυξη δεδομένων, Σύστημα διαχείρισης μάθησης, Κατηγοριοποίηση, Παλινδρόμηση, Πρόβλεψη Σύνοψη: Τα τελευταία χρόνια πολλά Εκπαιδευτικά Ιδρύματα έχουν υιοθετήσει Διαδικτυακές Πλατφόρμες Μάθησης, όπως Συστήματα Διαχείρισης Μάθησης (Learning Management Systems) και άλλες Διαδικτυακές Εφαρμογές. Η δυνατότητα της λεπτομερούς καταγραφής και αποθήκευσης μεγάλου όγκου δεδομένων (Big Data), καθιστά αυτά τα Συστήματα μια δεξαμενή «κρυμμένης» γνώσης η οποία μπορεί να αποκαλυφθεί με διάφορους μηχανισμούς εξόρυξης (Εξόρυξη Γνώσης από Εκπαιδευτικά Δεδομένα- Educational Data Mining & Learning Analytics). Η ερμηνείας της γνώσης αυτής, δύναται να συνεισφέρει στη λήψη αποφάσεων σε πολλά επίπεδα και κυρίως στη βελτίωση των εκπαιδευτικών και μαθησιακών διαδικασιών που συνδέονται άμεσα με την Εκπαίδευση. Σκοπός της παρούσας διπλωματικής εργασίας είναι η εξόρυξη και αξιοποίηση των δεδομένων και των πληροφοριών που προέρχονται από τη Διαδικτυακή Πλατφόρμα του Ελληνικού Ανοικτού Πανεπιστημίου- ενός εκπροσώπου της εξ Αποστάσεως Εκπαίδευσης- εφαρμόζοντας κατάλληλες μεθόδους και τεχνικές Εξόρυξης Γνώσης σε Εκπαιδευτικά Δεδομένα (EDM). Συγκεκριμένα, παρουσιάζεται μια μελέτη (Case Study) Εξόρυξης Δεδομένων από την Διαδικτυακή Πλατφόρμα Moodle του ΕΑΠ, στο πλαίσιο της Θεματική Ενότητας ΠΛΗ37 «Πληροφορική και Εκπαίδευση» κατά τη διάρκεια ενός ακαδημαϊκού έτους. Πρόκειται για ένα πρόβλημα πρόβλεψης μαθησιακών αποτελεσμάτων (Predicting the Course Outcomes) με τη βοήθεια ενός προβλεπτικού μοντέλου της επίδοσης τελικής εξέτασης στο πλαίσιο της ΘΕ ΠΛΗ37. Η εύρεση του κατάλληλου προβλεπτικού μοντέλου (ή αλλιώς «Κατηγοριοποιητή» - classifier) πραγματοποιήθηκε με τη χρήση κατάλληλης προσέγγισης της μεθόδου Κατηγοριοποίησης (Classification) και διεξήλθε με τη βοήθεια λογισμικών εφαρμογής Αλγορίθμων Εξόρυξης Δεδομένων (Weka, R Programming). Οι ερευνητικές προεκτάσεις της παρούσας έρευνας, όπως προκύπτει και από σχετική βιβλιογραφική ανασκόπηση, είναι η συνδρομή/συνεισφορά κατάλληλων προβλεπτικών μεθόδων (στην τρέχουσα περίπτωση της Κατηγοριοποίησης (Classification) και Παλινδρόμησης (Regression)) για την αντιμετώπιση φαινομένων μη-επιτυχούς επίδοσης των φοιτητών σε μια ΘΕ καθώς και φαινομένων εγκατάλειψης (dropouts) μιας ΘΕ. Επομένως, η αξιοποίηση έγκαιρων και αξιόπιστων πληροφοριών (όπως η πρόβλεψη ακαδημαϊκής επιτυχίας-επίδοσης φοιτητή κ.ά) συντελεί καταλυτικά στη λήψη αποφάσεων και κατ’ επέκταση στην πολύ-επίπεδη βελτίωση (εκπαιδευτικό, μαθησιακό, οργανωτικό, διοικητικό) των Εκπαιδευτικών Δομών. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαμιχαήλ Αναστασία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Παίγνια, Στρατηγική, Ισορροπία Nash, Παίχτες, Δημοπρασίες Σύνοψη: Η παρούσα διπλωματική εργασία πραγματεύεται τη Θεωρία Παιγνίων που αποτελεί ένα από τα πιο σημαντικά εργαλεία της Επιχειρησιακής Έρευνας και επιλύει περιπτώσεις πολλών ληπτών αποφάσεων σε περιβάλλον ανταγωνιστικών συμπεριφορών. Η Θεωρία Παιγνίων προέρχεται από τον κλάδο των εφαρμοσμένων μαθηματικών και εφαρμόζεται σε ολοένα και περισσότερους τομείς της επιστήμης και της ζωής, με κυρίαρχο τον τομέα της Οικονομίας. Στο 1ο κεφάλαιο αναφέρονται η ιστορική αναδρομή και οι βασικές αρχές της Επιχειρησιακής Έρευνας. Στο 2ο κεφάλαιο εισαγόμαστε στη Θεωρία Παιγνίων, περιγράφουμε τις ποικίλες εφαρμογές της σε όλους τους τομείς της ζωής και αναλύουμε τις βασικές έννοιες της και τους τρόπους αναπαράστασης. Στο 3ο κεφάλαιο περιγράφονται τα βασικά παίγνια δύο παικτών μηδενικού αθροίσματος καθώς και ο τρόπος επίλυσής τους είτε μέσω αμιγών είτε μεσω μικτών στρατηγικών. Συνεχίζοντας, στο 4ο κεφάλαιο ορίζουμε τα στρατηγικά παίγνια, την κυριαρχία των στρατηγικών, όπως επίσης και τα κλασικά παίγνια μη μηδενικού αθροίσματος, συμπεριλαμβανομένου του γνωστού «Prisoner’s Dilemma» και των εφαρμογών του. Στο 5ο κεφάλαιο περιγράφουμε την ισορροπία Nash για παίγνια με αμιγείς και μικτές στρατηγικές και αναλύουμε τη διαδικασία εύρεσης της βέλτιστης λύσης στρατηγικού παιγνίου με την παράθεση κατάλληλων παραδειγμάτων και με τη χρήση του λογισμικού Gambit. Έπειτα, μέσω του 6ου κεφαλαίου μαθαίνουμε για τα εκτεταμένα παίγνια με τέλεια πληροφόρηση, τις λύσεις τους καθώς και τον τρόπο εύρεσης της ισορροπίας Nash. Τα συμμαχικά παίγνια, που είναι ένα ακόμα είδος παιγνίων, αναλύονται στο 7ο κεφάλαιο και κατανοούνται από την εφαρμογή τους στα αντίστοιχα παραδείγματα. Τέλος στο 8ο κεφάλαιο μαθαίνουμε σχετικά με μία σπουδαία και πολύ χρήσιμη στις μέρες μας εφαρμογή της Θεωρίας Παιγνίων που είναι οι δημοπρασίες. Εκεί καταγράφονται τα βασικά μεγέθη των δημοπρασιών, περιγράφονται τα πολλά είδη τους, ενός ή πολλών αντικειμένων, ορίζονται οι Μπεϋζιανές δημοπρασίες όπως επίσης και οι γνωστές σε όλους μας ηλεκτρονικές δημοπρασίες που χρησιμοποιούνται ευρέως στο διαδίκτυο. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κοκκινάκης Δημήτρης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ωρίμανση Ostwald, Συστήματα μη γραμμικών ΣΔΕ, Aνάλυση ευστάθειας Σύνοψη: Η ωρίμανση κατά Ostwald είναι η διεργασία μέσω της οποίας ένα σύνολο κρυστάλλων δαφόρων μεγεθών, μέσα σε ένα διάλυμα, καταλήγει στην κατάσταση όπου υπάρχουν πλέον μόνο κρύσταλλοι ενός συγκεκριμένου μεγέθους. Οι κρύσταλλοι μικρότερου μεγέθους διαλύονται, αυξάνοντας έτσι τη συγκέντρωση του διαλύματος, ενώ οι μεγαλύτεροι κρύσταλλοι με τη σειρά τους αντλούν υλικό από το διάλυμα και κατά συνέπεια διευρύνουν το μέγεθός τους. Αυτή η ανταλλαγή υλικού έχει ως αποτέλεσμα την επικράτηση των αρχικά μεγαλύτερων κρυστάλλων. Το τελικό τους μέγεθος καθορίζεται με τέτοιο τρόπο, ώστε να είναι σε πλήρη ισορροπία με την τελική συγκέντρωση του διαλύματος. Στην παρούσα διπλωματική εργασία εισάγουμε το μαθηματικό μοντέλο της παραπάνω διεργασίας, το οποίο περιγράφεται από ένα σύστημα Ν συζευγμένων μη-γραμμικών συνήθων διαφορικών εξισώσεων (με Ν το πλήθος των διαφορετικών μεγεθών μέσα στο διάλυμα). Επιλύοντας το παραπάνω μοντέλο παρακολουθούμε τη χρονική εξέλιξη του συστήματος. Επικεντρώνουμε την προσοχή μας στις διαδοχικές στιγμές μηδενισμού των μικρότερων κρυστάλλων, καθώς επίσης στα χαρακτηριστικά της τελικής κατάστασης ισορροπίας για t → ∞. Τέλος, παρουσιάζουμε τη σύνδεση του συστήματός μας με διάφορες άλλες εφαρμογές της ωρίμανσης Ostwald, όπως η εξάπλωση και εξέλιξη μιας επιδημικής νόσου καθώς και μια παραλλαγή της διεργασίας έτσι ώστε η τελική κατάσταση ισορροπίας να παρουσιάζει ταλαντωτική συμπεριφορά. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παλαιολόγος Δημοσθένης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Πιθανότητες, Συναρτήσεις, Μαθηματικά λυκείου Σύνοψη: Ο σκοπός που γράφτηκε η παρούσα διπλωματική είναι: α) Να γίνει μια σύντομη αναδρομή στην ιστορία του διδακτικού βιβλίου στο Ελληνικό Εκπαιδευτικό σύστημα. Να δούμε πως το σχολικό βιβλίο βοήθησε να ανθίσει η τυπογραφία στο νεοσύστατο Ελληνικό κράτος. Θα αναφερθούμε επιγραμματικά στις γενικές επιστημονικές, παιδαγωγικές, και διδακτικές αρχές, που πρέπει να πληροί το σχολικό βιβλίο των Μαθηματικών σύμφωνα με το Ινστιτούτο Εκπαιδευτικής Πολιτικής. Θα αναφέρουμε τον τρόπο που γίνεται ο ορισμός της συγγραφικής ομάδος καθώς και την διαδικασία έκδοσης και διανομής των σχολικών βιβλίων. β) Να δούμε ποιός είναι ο γενικός σκοπός διδασκαλίας των Μαθηματικών στο Γυμνάσιο και στο Λύκειο όπως αυτός καθορίζεται μέσα από τα Προγράμματα Σπουδών. Να αναφέρουμε το νομοθετικό πλαίσιο που οριοθετεί την διδασκαλία των Μαθηματικών στις διάφορες βαθμίδες της Δευτεροβάθμιας εκπαίδευσης. Να εξετάσουμε αν οι ώρες που διδάσκονται τα Μαθηματικά σύμφωνα με το ωρολόγιο πρόγραμμα είναι αρκετές για να προσφερθεί η προβλεπόμενη από το θεσμικό πλαίσιο μαθηματική παιδεία. γ) Να παρουσιάσουμε περιληπτικά την ύλη που διδάσκεται στο Γυμνάσιο. Θα αναφερθούμε επιγραμματικά στις βασικές έννοιες που διδάσκονται και αποτελούν τον βασικό κορμό της Μαθηματικής εκπαίδευσης στο Γυμνάσιο, καθώς και στις δευτερεύουσες Μαθηματικές έννοιες όπως αυτές παρουσιάζονται σε κάθε τάξη. δ) Να παρουσιάσουμε την ύλη που διδάσκονται οι μαθητές στα Μαθηματικά Γενικής Παιδείας στο μάθημα της ''Άλγεβρας'' στην Α, Β Λυκείου και στα ''Μαθηματικά και Στοιχεία Στατιστικής'' στην Γ Λυκείου. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τσίνος Χρήστος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Διακριτοποίηση ΣΔΕ, Μέθοδος Kahan, Ολοκληρωσιμότητα, Βάσεις Ηirota-Kimura Σύνοψη: Στην παρούσα διπλωματική εργασία μελετάμε τις ολοκληρώσιμες διακριτοποιήσεις «τύπου Kahan» σε γνωστά συστήματα συνήθων διαφορικών εξισώσεων. Η συγκεκριμένη μέθοδος μπορεί να εφαρμοστεί σε κάθε δευτεροβάθμειο πολυωνυμικό διανυσματικό πεδίο και εμφανίστηκε επίσης σε εργασίες των Hirota και Kimura. Λόγω ενός μηχανισμού που ακόμα δεν έχει κατανοηθεί πλήρως, τέτοιες διακριτοποιήσεις φαίνεται να κληρονομούν την ολοκληρωσιμότητα των αλγεβρικά πλήρως ολοκληρώσιμων συστημάτων, όπως έχει δειχθεί σε εργασίες των Petrera και συνεργατών. Ο στόχος της παρούσας εργασίας είναι η μελέτη και η εφαρμογή της ευρετικής αυτής μεθόδου για την διερεύνηση της ολοκληρωσιμότητας διακριτοποιήσεων σε γνωστά συστήματα διαφορικών εξισώσεων. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαδήμα Νίκη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Γάμμα συνάρτηση, Βήτα συνάρτηση Σύνοψη: Η συνάρτηση Γάμμα του Euler είναι μία από τις πλέον βασικές ειδικές συναρτήσεις, όχι μόνον της ανάλυσης αλλά και της μαθηματικής φυσικής. Η συνεχής έρευνα στην περιοχή των μαθηματικών και της φυσικής, δημιούργησε την ανάγκη επέκτασης της συνάρτησης Γάμμα. Μία από τις επεκτάσεις είναι η q-Γάμμα συνάρτηση, η οποία έγινε με την εισαγωγή του q-λογισμού. Στην εργασία αυτή, συγκεντρώνονται και καταγράφονται οι ιδιότητες της q-Γάμμα συνάρτησης, καθώς και ανισότητες, που ικανοποιούν οι συναρτήσεις αυτές και σχετικές με αυτές συναρτήσεις, οι οποίες προκύπτουν, κυρίως, από ιδιότητες μονοτονίας αυτών. Στο πρώτο κεφάλαιο της εργασίας αναφέρονται οι γνωστές ιδιότητες της συνάρτησης Γάμμα. Στο δεύτερο κεφάλαιο παρουσιάζονται τα βασικά απαραίτητα στοιχεία του q λογισμού. Στο τρίτο κεφάλαιο ορίζονται οι συναρτήσεις q-Γάμμα, q-Βήτα και q-ψ(x) καθώς και γίνεται αναφορά στις ιδιότητες που ισχύουν για αυτές. Στο τέταρτο κεφάλαιο αναφέρονται ιδιότητες μονοτονίας συναρτήσεων που περιέχουν q-Γάμμα συναρτήσεις καθώς και ανισότητες που ικανοποιούν οι συναρτήσεις αυτές. Τα αποτελέσματα, που καταγράφονται , είναι συγκεντρωμένα από επιστημονικές εργασίες, που έχουν δημοσιευτεί, σχετικές με τις q-Γάμμα συναρτήσεις και πολλά εξ αυτών είναι γενικεύσεις ανάλογων αποτελεσμάτων που αφορούν σε Γάμμα συναρτήσεις. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κωστόπουλος Αριστοτέλης
Κατηγορία: Διδακτορικές Διατριβές - Έτος 2011
Λέξεις Κλειδιά: Τεχνητά νευρωνικά δίκτυα, Βελτιστοποίηση, Συζυγείς κλίσεις, Γραμμική αναζήτηση, Στρατηγικές επανεκκίνησης, Ρυθμός εκπαίδευσης, Αλγόριθμος εκπαίδευσης, Ολική σύγκλιση Σύνοψη: Αρχείο Διδακτορικής Διατριβής |
![]() ![]() ![]() Συγγραφέας: Καραμέρος Παναγιώτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Αξία σε κίνδυνο, Αναμενόμενο έλλειμα Σύνοψη: Η ποσοτικοποίηση του κινδύνου της αγοράς μέσω της Αξίας σε Κίνδυνο (Value at Risk), αποτελεί ένα χρήσιμο εργαλείο ελέγχου για ένα χρηματοοικονομικό οργανισμό προκειμένου να διασφαλίζεται η επάρκεια ρευστότητας και η ασφάλεια των επενδύσεων. Ωστόσο, η μαθηματική μοντελοποίηση του κινδύνου για ένα χαρτοφυλάκιο αποτελεί ένα δύσκολο εγχείρημα. Στη παρούσα διπλωματική εργασία εξετάζονται τεχνικές εκτίμησης της Αξίας σε Κίνδυνο, που αποτελεί ένα σημαντικό μέτρο κινδύνου και βασίζεται στην κατανομή των αποδόσεων ενός χαρτοφυλακίου. Αρχικά, παρουσιάζονται οι κατηγορίες οικονομικού κινδύνου και ο ρόλος που παίζουν τα μέτρα κινδύνου. Εισάγονται οι έννοιες της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος (Expected Shortfall) και μελετώνται πιθανοί τρόποι εκτίμησης τους. Η μελέτη επικεντρώνεται σε δύο κατανομές από τη θεωρία ακραίων τιμών, τη Γενικευμένη Κατανομή Ακραίων Τιμών και τη Γενικευμένη Pareto. Για την εκτίμηση των παραμέτρων των κατανομών αυτών επιλέγονται δεδομένα σύμφωνα με δύο τεχνικές. Αυτές είναι η μέθοδος Μεγίστων ανά Περίοδο (Block Maxima) και η μέθοδος Κορυφών πάνω από Κατώφλι (Peaks Over Threshold), οι οποίες παρουσιάζονται αναλυτικά. Η εκτίμηση των παραμέτρων μπορεί να γίνει με τη κλασσική μέθοδο της μέγιστης πιθανοφάνειας, όμως εδώ χρησιμοποιούνται εναλλακτικά και μέθοδοι Monte Carlo και Markov Chain Monte Carlo, όταν το πρόβλημα αντιμετωπίστηκε με μία Μπεϋζιανή οπτική. Πιο συγκεκριμένα, χρησιμοποιήθηκε η μέθοδος της δειγματοληψίας σπουδαιότητας (Importance Sampling) και ο υβριδικός δειγματολήπτης Gibbs, δηλαδή ένας δειγματολήπτης Gibbs στον οποίο τουλάχιστον μια προσομοίωση από την πλήρη δεσμευμένη κατανομή έχει αντικατασταθεί από ένα βήμα Metropolis, καθώς δεν μπορεί να γίνει απευθείας προσομοίωση από αυτή λόγω της πολύπλοκης μορφής της. Τέλος, χρησιμοποιήθηκε και η μη παραμετρική μέθοδος Hill, ως εναλλακτική των εκτιμήσεων που γίνονται με βάση τη Γενικευμένη Pareto. Για την πειραματική μελέτη των τεχνικών εκτίμησης της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος που αναφέρθηκαν προηγουμένως, χρησιμοποιήθηκαν πραγματικά δεδομένα κίνησης τεσσάρων χρηματιστηριακών δεικτών και τεσσάρων χρηματιστηριακών προϊόντων (μετοχών). Τέλος, για την εφαρμογή αξιοποιήθηκαν πακέτα διαθέσιμα στη στατιστική γλώσσα προγραμματισμού R ενώ συμπληρωματικά δημιουργήθηκε κώδικας R όπου αυτό απαιτήθηκε. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Καραγκούνης Νικόλαος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2009
Λέξεις Κλειδιά: Διαχείριση κινδύνου, Δυνητική ζημία, Ιστορική προσομοίωση Σύνοψη: Το ζητούμενο σε κάθε επιχείρηση είναι η αντιμετώπιση καταστάσεων οι οποίες μπορεί να παρουσιάσουν αυξημένη πιθανότητα απωλειών. Για να επιτευχθεί ο συγκεκριμένος στόχος είναι αναγκαίος ο εντοπισμός και ο καθορισμός της σημαντικότητας των επικείμενων κινδύνων. Αυτούς τους κινδύνους μπορούμε να τους κατατάξουμε σε επιχειρησιακούς, μη επιχειρησιακούς και χρηματοοικονομικούς. Η διαχείριση του κινδύνου δεν έχει ως πρώτο σκοπό την αποφυγή του κινδύνου, αλλά την ελαχιστοποίησή του, αφού πρώτα εντοπιστεί και καθοριστεί το πόσο σημαντικός είναι. Στόχος είναι να ποσοτικοποιηθεί ο κίνδυνος και να υπολογίζεται ένα μέτρο συνολικού κινδύνου, έτσι ώστε δίνοντας μια τιμή σε αυτόν, να αποφασίσουμε αν θα πάρουμε το ρίσκο να τον αναλάβουμε ή όχι, με μεγαλύτερη ευκολία. Ένα μέτρο συνολικού κινδύνου, προκύπτει από την προσέγγιση της δυνητικής ζημίας {VAR(Value−At−Risk)}. Η προσέγγιση αυτή αποτελεί μια ποσοστιαία κατανομή κέρδους και απώλειας σε ένα συγκεκριμένο χρονικό διάστημα. Μπορεί να χρησιμοποιηθεί από οποιοδήποτε οργανισμό εκτίθεται σε χρηματοοικονομικό κίνδυνο και συνοψίζει τη χειρότερη ζημία με δεδομένο διάστημα εμπιστοσύνης. Σκοπός της παρούσας εργασίας είναι η περιγραφή του τρόπου λειτουργίας της προσέγγισης της δυνητικής ζημίας (VAR). Για την αξιολόγηση του κινδύνου η δυνητική ζημία (VAR) χρησιμοποιεί τρεις μεθόδους προσομοίωσης, την Ιστορική, την Monte Carlo και την Variance−covariance προσομοίωση. Παρουσιάζονται οι μέθοδοι αυτοί, τα πλεονεκτήματα και τα μειονεκτήματά τους. Η εργασία καταλήγει σε μελέτη μιας εφαρμογής, με τη μέθοδο της Ιστορικής προσομοίωσης. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Πήττα Θεοδώρα
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2009
Λέξεις Κλειδιά: Συναρτήσεις σάρωσης, Αξιοπιστία Σύνοψη: Σκοπός της εργασίας είναι η σύνδεση της στατιστικής συνάρτησης σάρωσης S_(n,m), που εκφράζει τον μέγιστο αριθμό των επιτυχιών που περιέχονται σε ένα κινούμενο παράθυρο μήκους m το οποίο “σαρώνει” n - συνεχόμενες προσπάθειες Bernoulli, με την αξιοπιστία ενός συνεχόμενου k-μεταξύ-m-από-τα-n συστήματος αποτυχίας (k-μεταξύ-m-από-τα-n:F σύστημα). Αρχικά υπολογίζουμε τη συνάρτηση κατανομής και τη συνάρτηση πιθανότητας της στατιστικής συνάρτησης σάρωσης S_(n,m). Αυτό το επιτυγχάνουμε συνδέοντας την S_(n,m) με την τυχαία μεταβλητή T_k^((m))που εκφράζει τον χρόνο αναμονής μέχρι να συμβεί μια γενικευμένη ροή ή αλλιώς μέχρι να συμβεί η “πρώτη σάρωση” σε μια ακολουθία τυχαίων μεταβλητών Bernoulli οι οποίες παίρνουν τιμές 0 ή 1 ανάλογα με το αν έχουμε αποτυχία ή επιτυχία, αντίστοιχα. Υπολογίζουμε τη συνάρτηση κατανομής και τη συνάρτηση πιθανότητας της T_k^((m)) είτε με τη μέθοδο της εμβάπτισης σε Μαρκοβιανή αλυσίδα είτε μέσω αναδρομικών τύπων και παίρνουμε τις αντίστοιχες συναρτήσεις για την τυχαία μεταβλητή S_(n,m) [Glaz and Balakrishnan (1999), Balakrishnan and Koutras (2001)]. Στη συνέχεια ασχολούμαστε με την αξιοπιστία του συνεχόμενου k-μεταξύ-m-από-τα-n:F συστήματος (Griffith, 1986). Ένα τέτοιο σύστημα αποτυγχάνει αν ανάμεσα σε m συνεχόμενες συνιστώσες υπάρχουν τουλάχιστον k που αποτυγχάνουν (1≤k≤m≤n). Παρουσιάζουμε ακριβείς τύπους για την αξιοπιστία για k=2 καθώς και για m=n,n-1,n-2,n-3 (Sfakianakis, Kounias and Hillaris, 1992) και δίνουμε έναν αναδρομικό αλγόριθμο για τον υπολογισμό της (Malinowski and Preuss, 1994). Χρησιμοποιώντας μια δυϊκή σχέση ανάμεσα στη συνάρτηση κατανομής της T_k^((m)) και κατ’ επέκταση της S_(n,m) με την αξιοπιστία, συνδέουμε την αξιοπιστία αυτού του συστήματος με τη στατιστική συνάρτηση σάρωσης S_(n,m). Τέλος σκιαγραφούμε κάποιες εφαρμογές των στατιστικών συναρτήσεων σάρωσης στην μοριακή βιολογία [Karlin and Ghandour (1985), Glaz and Naus (1991), κ.ά.], στον ποιοτικό έλεγχο [Roberts,1958] κ.τ.λ.. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Γιαννοπούλου Αρετή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2011
Λέξεις Κλειδιά: Εξ αποστάσεως εκπαίδευση, Διδασκαλία μαθηματικών, Νέες τεχνολογίες στην εκπαίδευση Σύνοψη: Στην εργασία αυτή γίνεται προσπάθεια για μια εκτενή διερεύνηση των σύγχρονων εργαλείων που χρησιμοποιούνται για την εξ αποστάσεως διδασκαλία των μαθηματικών. Αρχικά παρουσιάζονται οι διάφορες μορφές διδασκαλίας και μάθησης, έτσι όπως αυτές προκύπτουν από τους διαφορετικούς ρόλους επικοινωνίας μεταξύ των εκπαιδευτικών, των μαθητών, των περιεχομένων και των μέσων διδασκαλίας. Οι μορφές αυτές είναι οι δασκαλοκεντρικές-μετωπικές, οι μαθητοκεντρικές, οι μεικτές και οι ομαδοκεντρικές. Στη συνέχεια παρουσιάζονται κάποιες νεότερες αντιλήψεις για τη μάθηση, όπως είναι η διερευνητική μάθηση και η μέθοδος project, καθώς και τα πλεονεκτήματά τους έναντι των παλαιότερων μορφών διδασκαλίας. Στην επόμενη ενότητα παρουσιάζεται ο τρόπος που οι νέες τεχνολογίες της πληροφορίας και της επικοινωνίας (ΤΠΕ) χρησιμοποιούνται ως μέθοδοι διερευνητικής μάθησης, επηρεάζοντας τη μαθηματική εκπαίδευση. Οι σύγχρονες τεχνολογίες προσφέρουν στους μαθητές δυνατότητες για μάθηση μέσα από ένα παιγνιώδη τρόπο, ενώ μπορούν ταυτόχρονα να βοηθήσουν τους μαθητές να αναπτύξουν ανώτερη μαθηματική σκέψη. Το συντριπτικό ποσοστό των παραπάνω εφαρμογών και λογισμικών ΤΠΕ αφορά λογισμικό που κυρίως χρησιμοποιείται μέσα στην τάξη. Οι νέες τάσεις όμως ευνοούν τη λεγόμενη εξ αποστάσεως εκπαίδευση (distance learning) με χρήση ηλεκτρονικών μέσων και τεχνολογιών ΤΠΕ. Αν θέλαμε να περιγράψουμε απλώς την εξ αποστάσεως εκπαίδευση, θα λέγαμε ότι πρόκειται για μια εκπαιδευτική διαδικασία όπου ο διδασκόμενος βρίσκεται σε φυσική απόσταση από το διδάσκοντα και τον εκπαιδευτικό φορέα. Ωστόσο οφείλουμε να δώσουμε κι έναν επιπλέον, παιδαγωγικής διάστασης ορισμό: η εκπαίδευση που διδάσκει το μαθητή πώς να μαθαίνει μόνος του και πώς να λειτουργεί αυτόνομα προς μια ευεργετική πορεία αυτομάθησης και γνώσης. Η επόμενη ενότητα αναφέρεται στο Web. Το Web έχει συνεισφέρει αρκετά τα τελευταία χρόνια στην εξ αποστάσεως εκπαίδευση. Η ανεξαρτησία από την τάξη και από κάποια συγκεκριμένη πλατφόρμα λογισμικού, η διαθεσιμότητα εργαλείων για τη δημιουργία μαθημάτων στο Web, η φθηνή και αποδοτική αποθήκευση και διανομή του υλικού των μαθημάτων, υπερσύνδεσμοι σε προτεινόμενες σελίδες και υλικό, οι ψηφιακές βιβλιοθήκες και διάφορες άλλες πηγές αποτελούν μερικά από τα πλεονεκτήματα που προσφέρει η βασισμένη στο Web εκπαίδευση. Η εξ αποστάσεως εκπαίδευση μέσω διαδικτύου έχει πλέον κάνει αισθητή την παρουσία της στη Δευτεροβάθμια και κυρίως στην Τριτοβάθμια Εκπαίδευση. Δεδομένης της αναποτελεσματικότητας της χρήση των δικτυακών τόπων (λόγω του κόστος κατασκευής και συντήρησης που απαιτούν σε ότι αφορά οικονομικές αλλά και ανθρώπινες πηγές) αναπτύχθηκαν τα συστήματα διαχείρισης περιεχομένου και τάξεων, τα οποία υποστηρίζουν εφαρμογές δημιουργίας και διαχείρισης εκπαιδευτικού υλικού. Τα περισσότερα από αυτά τα οποία είναι και ευρέως χρησιμοποιούμενα αποτελούν εφαρμογές ανοιχτού κώδικα, γεγονός που ισχυροποιεί την επιλογή χρήσης τους. Ορισμένα από τα συστήματα διαχείρισης που αναφέρονται είναι το Moodle, το eFront, το open eClass και το Lams. Η επόμενη ενότητα αναφέρεται στα χαρακτηριστικά ενός εκπαιδευτικού υλικού για την εξ αποστάσεως διδασκαλία του και τα κριτήρια αξιολόγησης του διδακτικού υλικού της εξ αποστάσεως εκπαίδευσης. Ως συνέπεια των παραπάνω, χρησιμοποιήθηκε το δυναμικό περιβάλλον γεωμετρίας Geogebra για την παραγωγή εκπαιδευτικού υλικού. Έπειτα ακολουθεί μια ενότητα το περιεχόμενο της οποίας ασχολείται με την διδασκαλία των τριγωνομετρικών αριθμών οξείας γωνίας και ένα σενάριο για την εξ αποστάσεως διδασκαλία τους, το οποίο τοποθετήθηκε στο εργαλείο διαχείρισης LAMS (Learning Activity Management System) ώστε να είναι προσβάσιμο μέσω διαδικτύου, παρουσιάζοντας με τον τρόπο αυτό την απτή πραγματικότητα της εξ αποστάσεως εκπαίδευσης. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Ανδρικοπούλου Μαρία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Βιωματικό πλαίσιο διδασκαλίας, Εργαλειακό πλαίσιο διδασκαλίας, Αριθμητική παράσταση, Υπολογιστής τσέπης, Κριτικο-ερμηνευτικό πλαίσιο διδασκαλίας, Στοχοκεντρικό πλαίσιο διδασκαλίας Σύνοψη: Η παρούσα ερευνητική εργασία, μελετά συγκεκριμένα τη δυσκολία που αντιμετωπίζουν οι μαθητές στην εφαρμογή των κανόνων που διέπουν την προτεραιότητα των πράξεων εντός των αριθμητικών παραστάσεων. Δυο δραστηριότητες «βιωματικού» χαρακτήρα σε μορφή παραμυθιού εφάρμοσα σε μαθητές A ΄ Γυμνασίου και ΣΤ ΄ Δημοτικού και ανέδειξαν αυτή τη δυσκολία η οποία για να διερευνηθεί θα πρέπει να ενταχθεί σ ΄ ένα ευρύτερο θεωρητικό πλαίσιο. Στο θεωρητικό μέρος της εργασίας δίνονται πληροφορίες αρχικά για δύο κατηγορίες πλαισίων διδασκαλίας και μάθησης στις οποίες ανήκουν οι συνήθως παρατηρούμενες πρακτικές στην τάξη των Μαθηματικών: τα εργαλειακά ή στοχοκεντρικά και τα βιωματικά ή κριτικο-ερμηνευτικά πλαίσια. (Παυλοπούλου- Πατρώνη, 2013). Στη συνέχεια γίνεται αναφορά στον παραδοσιακό τρόπο διδασκαλίας των Μαθηματικών που έχει γενικά χαρακτήρα εργαλειακό ή στοχοκεντρικό. Η αναποτελεσματικότητά του, διαπιστώνεται και από τη λανθασμένη αποδοχή της σημασίας της επίλυσης προβλήματος αφού και αυτή αντιμετωπίζεται μηχανιστικά χωρίς να επιτρέπει στο μαθητή τη δημιουργική προσέγγισή της. Εν συνεχεία αποπειρώμαι να ερμηνεύσω με κοινωνικά κριτήρια τις αδυναμίες των μαθητών, με βάση τη θεωρία της πολιτισμικής αποστέρησης του B. Bernstein. Το θεωρητικό μέρος της εργασίας συνεχίζεται ακόμη με την ανάλυση δυο θεμάτων που απαντούν σε δύο βασικά ερωτήματα : πώς το μαθηματικό πρόβλημα σε μορφή παραμυθιού κάνει τους μαθητές να βιώσουν εμπειρικά τις μαθηματικές έννοιες; Με ποιόν τρόπο η χρήση του παραμυθιού στα μαθηματικά είναι ικανή να καλλιεργήσει το μαθηματικό γλωσσικό κώδικα των μαθητών; Τέλος, αναλύεται το ζήτημα της χρήσης του υπολογιστή τσέπης που αναδεικνύει εν τέλει το κεντρικό θέμα της παρούσας ερευνητικής εργασίας: την αδυναμία των μαθητών να κατανοήσουν την προτεραιότητα των πράξεων εντός της αριθμητικής παράστασης. Το ερευνητικό μέρος της εργασίας περιλαμβάνει δυο μαθηματικές δραστηριότητες οι οποίες πραγματοποιήθηκαν εντός της σχολικής αίθουσας με μαθητές της ΣΤ΄ τάξης δημοτικού και Α΄ τάξης γυμνασίου. Η πρώτη δραστηριότητα εκτυλίχθηκε σε 3 στάδια . Αρχικά οι μαθητές ασχολήθηκαν ατομικά, έπειτα κατά ομάδες και, τέλος, όλοι μαζί, με ένα βιωματικού χαρακτήρα πρόβλημα σε μορφή παραμυθιού χρησιμοποιώντας έναν υπολογιστή τσέπης ως διάμεσο μεταξύ μαθητή και μαθηματικού κώδικα για την επαλήθευση των αποτελεσμάτων τους. Οι μαθητές στη συγκεκριμένη δραστηριότητα αντιμετώπισαν προβλήματα στην εφαρμογή αριθμητικών παραστάσεων και στη μεταφορά του φυσικού λόγου σε μαθηματικό λόγο, κυρίως αυτοί της ΣΤ ΄ δημοτικού. Η γραμμικότητα της ανάγνωσης του σεναρίου παίζει σε αυτό το σημείο σημαντικό ρόλο. Η δεύτερη δραστηριότητα δόθηκε επίσης ως επιμέρους ερώτημα στα πλαίσια του προαναφερθέντος προβλήματος σε μορφή παραμυθιού. Και σε αυτή τη δραστηριότητα παρουσιάστηκαν παρόμοιες δυσκολίες, όχι όμως στον ίδιο βαθμό. Παρατίθενται, τέλος, τα γραπτά των μαθητών που περιλαμβάνουν το συλλογισμό τους και τους τρόπους επίλυσης του προβλήματος. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Στουφής Διονύσιος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2011
Λέξεις Κλειδιά: Συμμετρικοί χώροι, Άλγεβρα Lie Σύνοψη: Η θεωρία των συμμετρικών χώρων αποτελεί μια σπουδαία κλάση των ομογενών χώρων, με εφαρμογές σε πολλούς κλάδους των μαθηματικών όπως στην αλγεβρική και την διαφορική γεωμετρία. Σε αυτήν την εργασία θα δώσουμμε τον ορισμό των συμμετρικών χώρων, τα βασικά τους χαρακτηριστικά και την ταξινόμησή τους. Θα περιγράψουμε τους χώρους αυτούς κυρίως αλγεβρικά, οπότε δεν θεωρείται απαραίτητο από τον αναγνώστη να γνωρίζει εκτενώς την θεωρία της διαφορικής γεωμετρίας για να κατανοήσει πλήρως την εργασία. Αρχείο Διπλωματικής Εργασίας |
ΕπικοινωνίαΕργαστήριο Η/Υ & Εφαρμογών Πανεπιστημιούπολη, T.K. 265 00, Ρίο Πατρών Τηλ: +30 2610 997280 Φαξ: +30 2610 997424 lcsa@math.upatras.grΛοιποί Σύνδεσμοι Τμήματος
|
Ανάπτυξη & Συντήρηση Ιστοχώρου
Εργαστήριο Η/Υ & Εφαρμογών
Υπεύθ. Επικοινωνίας : Δ. Ανυφαντής (Ε.Τ.Ε.Π)
|