Διακεκριμένες Επιστημονικές Εργασίες Τμήματος Μαθηματικών
Εργασίες σε Επιστημονικά Συνέδρια
Εργασίες σε Επιστημονικά Περιοδικά
Διπλωματικές Εργασίες Μ.Δ.Ε - Διδακτορικές Διατριβές Τμήματος Μαθηματικών
Διπλωματικές Εργασίες Μ.Δ.Ε
Διδακτορικές Διατριβές
![]() ![]() ![]() Συγγραφέας: Ηλιοπούλου Μαρίνα
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Βιομαγνητικά ρευστά, Επίδραση μαγνητικόυ πεδίου, Βιομαγνητοϋδροδυναμική, Αριθμητικά σχήματα, Αλγόριθμος του Thomas, Μέθοδος ψευδομετάβασης, Μέθοδος line by line Σύνοψη: Η παρούσα εργασία εκπονήθηκε στο πλαίσιο Διπλωματικής διατριβής του Διατμηματικού Προγράμματος Μεταπτυχιακών Σπουδών «Μαθηματικά των Υπολογιστών και των Αποφάσεων» των Τμημάτων Μαθηματικού και Μηχανικών Η/Υ και Πληροφορικής του Πανεπιστημίου Πατρών. Το φυσικό πρόβλημα που μελετάμε είναι η Ροή Βιομαγνητικού Ρευστού σε Ανεύρυσμα υπό την επίδραση Μαγνητικού Πεδίου. Θεωρούμε το αίμα ως μαγνητικό ρευστό και υποθέτουμε πως συμπεριφέρεται ως ένα ηλεκτρικά αγώγιμο, ομογενές και μη ισόθερμο Νευτώνειο μαγνητικό ρευστό που παρουσιάζει παράλληλα ιδιότητες σιδηρομαγνητικού (ferrofluid) ή παραμαγνητικού υλικού. Οι βασικοί στόχοι της μελέτης είναι η παρουσίαση μίας μεθοδολογίας αριθμητικής επίλυσης και η μελέτη της επίδρασης του μαγνητικού πεδίου στην ροή του αίματος στην περιοχή του ανευρύσματος. Το φυσικό πρόβλημα που μελετάμε είναι αυτό που μελετήθηκε στην εργασία Ε. Ε. Tzirtzilakis, Biomagnetic Fluid Flow in an Aneurism Using FerroHydroDynamics Principles, Physics of Fluids, 27, 061902, 2015, με την επιπρόσθετη υιοθέτηση των αρχών της Μαγνητοϋδροδυναμικής λόγω της ηλεκτρικής αγωγιμότητας. Στο πρώτο κεφάλαιο, παραθέτουμε ορισμένες εισαγωγικές έννοιες γενικά περί μαγνητικών ρευστών. Ακόμα αναφερόμαστε στα Βιομαγνητικά Ρευστά και πιο συγκεκριμένα στο αίμα, την σύνδεσή του με τα μαγνητικά ρευστά, τις ροϊκές μαγνητικές ιδιότητες αυτού, καθώς επίσης και διάφορες σχετικές εφαρμογές στην Ιατρική. Στο δεύτερο κεφάλαιο, περιγράφουμε κάποια αριθμητικά εργαλεία τα οποία χρησιμοποιούμε κατά την επίλυση του προβλήματος. Αρχικά παρουσιάζουμε βασικά αριθμητικά σχήματα πεπερασμένων διαφορών με την βοήθεια των οποίων γίνεται η προσέγγιση μερικών παραγώγων. Επιπλέον αναφερόμαστε στα είδη των προβλημάτων όπως αυτά ταξινομούνται με βάση την μορφή διαφορικών εξισώσεων με μερικές παραγώγους που τα διέπουν καθώς και τις αντίστοιχες συνοριακές τους συνθήκες. Στην συνέχεια παρουσιάσουμε την μέθοδο διαδοχικών υπερχαλαρώσεων (Successive Over Relaxation - S.O.R.) η οποία είναι μια επαναληπτική μέθοδος που θα χρησιμοποιήσουμε για την επίλυση εξισώσεων του προβλήματος. Επιπροσθέτως παρουσιάζουμε τον αλγόριθμο του Thomas για την επίλυση αλγεβρικού συστήματος με τριδιαγώνιο πίνακα αγνώστων και μία επαναληπτική, μερικώς μη εκπεφρασμένη μεθοδολογία επίλυσης εξισώσεων με μερικές παραγώγους (line by line implicit method). Στο τρίτο κεφάλαιο παραθέτουμε την μαθηματική μοντελοποίηση του φυσικού προβλήματος που περιγράφεται από ένα συζευγμένο μη γραμμικό σύστημα διαφορικών εξισώσεων με μερικές παραγώγους που υπόκεινται σε κατάλληλες συνοριακές συνθήκες. Οι εξισώσεις αυτές μετασχηματίζονται με την εισαγωγή της ρευματική συνάρτησης και του στροβιλισμού. Στη συνέχεια εκτελούμε διάφορους μετασχηματισμούς του φυσικού χωρίου και του υπολογιστικού πλέγματος, κατασκευάζουμε τις συνοριακές συνθήκες και παρουσιάζουμε τον αλγόριθμο της αριθμητικής επίλυσης του προβλήματος. Τέλος, στο τέταρτο κεφάλαιο παραθέτουμε αποτελέσματα για διάφορες τιμές των παραμέτρων που σχετίζονται με το φυσικό πρόβλημα. Εκτελούμε συγκρίσεις μεταξύ ροής του ρευστού υπό την επίδραση μαγνητικού πεδίου σε σύγκριση με την απλή υδροδυναμική περίπτωση, δηλαδή της ροής του ρευστού χωρίς την παρουσία μαγνητικού πεδίου. Η επίδραση του μαγνητικού πεδίου στην ροή είναι σημαντική τόσο για το πεδίο ταχυτήτων όσο και για το πεδίο θερμοκρασίας. Παρουσιάζουμε επίσης την σημαντική επίδραση του συντελεστή τριβής και μεταφοράς θερμότητας στα τοιχώματα. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κάρλος Σταμάτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Γεννήτριες τυχαίων αριθμών, Ψευδοτυχαίοι αριθμοί, Τυχαίοι αριθμοί, Τυχαιότητα, Ανακάτεμα, Προσομοίωση Σύνοψη: Σκοπός της συγκεκριμένης πτυχιακής εργασίας αποτελεί η μελέτη, η ανάλυση, η διερεύνηση και η κατηγοριοποίηση των σημαντικότερων μεθόδων παραγωγής τυχαίων αριθμών. Σε πρώτο στάδιο, παρουσιάσθηκε μία ιστορική αναδρομή σχετικά με τους τυχαίους αριθμούς και αναφέρθηκαν οι σημαντικότερες εφαρμογές που αυτοί βρίσκουν εφαρμογή. Στη συνέχεια, προσδιορίστηκαν οι ιδιότητες που πρέπει να πληρούνται στις γραμμικές συμπτωτικές γεννήτριες καθώς και τα κυριότερα χαρακτηριστικά των υπόλοιπων γεννητριών. Εν συνεχεία, παρουσιάσθηκαν οι πιο γνωστές σουίτες στατιστικών τεστ που αξιοποιούνται πλέον από το σύνολο των σύγχρονων εταιριών, οι οποίες απαιτούν κάποιο επίπεδο τυχαιότητας στις εφαρμογές τους. Επιπλέον, στην εργασία συμπεριλήφθηκαν οι υλοποιήσεις που έγιναν στα υπολογιστικά περιβάλλοντα των Python, R και Matlab, προκειμένου να εξομοιωθεί η συμπεριφορά διαφόρων γεννητριών τυχαίων αριθμών και να εξετασθεί η συμπεριφορά τους με τα εκάστοτε στατιστικά κριτήρια. Τέλος, αναλύεται εις βάθος η υλοποίηση του τυχερού παιχνιδιού Draw Poker, με σκοπό την εξομοίωση του τρόπου λειτουργίας της με τη χρήση ψευδοτυχαίων αριθμών και την εξακρίβωση της ορθότητας και του επιπέδου εμπιστοσύνης σε μία τέτοιου είδους ντετερμινιστική εφαρμογή. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαδοπούλου Αργυρώ
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ηλεκτρονικές δεξιότητες, Εξ αποστάσεως εκπαίδευση Σύνοψη: Οι ραγδαίες τεχνολογικές εξελίξεις των τελευταίων ετών και μια σειρά επιπλέον λόγων όπως η οικονομική κρίση, η παγκοσμιοποίηση και οι υψηλοί δείκτες ανεργίας επηρέασαν τις δομές και τις απαιτήσεις στην αγορά εργασίας. Γενικότερα, παρατηρήθηκε στροφή των αγορών σε θέσεις εργασίας που χαρακτηρίζονται από μεγαλύτερη ένταση ικανοτήτων και δημιουργία πολλών θέσεων εργασίας στον τομέα των υπηρεσιών και της τεχνολογίας. Στην ταχύτητα αλλαγής του σκηνικού στον τομέα της απασχόλησης φάνηκε να μην μπορεί να ανταποκριθεί επαρκώς το εκπαιδευτικό σύστημα. Η προσαρμογή των διαδικασιών και των φιλοσοφιών των εκπαιδευτικών συστημάτων στις νέες απαιτήσεις της αγοράς εργασίας ήταν αργή δημιουργώντας τεράστια κενά στην προσφορά συγκεκριμένων προσόντων και δεξιοτήτων, κυρίως στον τομέα ΤΠΕ. Σε ευρωπαϊκό επίπεδο το παραπάνω πρόβλημα άρχισε να γίνεται αντιληπτό στις αρχές της χιλιετίας και έχοντας ως απώτερο σκοπό τη δημιουργία μιας ενιαίας Ευρωπαϊκής αγοράς ξεκίνησε μια σειρά δράσεων. Οι δράσεις αυτές στοχεύουν στην ανάπτυξη ικανοτήτων προσαρμοσμένων στις νέες απαιτήσεις της αγοράς εργασίας καταργώντας τα εθνικά σύνορα. Περιλαμβάνουν δημιουργία ευρωπαϊκών και εθνικών πλαισίων προσόντων, (συνδεδεμένων μεταξύ τους), προγράμματα συνεχούς επιμόρφωσης και κατάρτισης, προσανατολισμό των εκπαιδευτικών συστημάτων στα μαθησιακά αποτελέσματα και σεμινάρια απόκτησης ηλεκτρονικών ικανοτήτων. Οι νέες αυτές απαιτήσεις σε συνδυασμό με την εξέλιξη της τεχνολογίας είχαν ως επακόλουθο τη δημιουργία νέων μέσων και μεθόδων διδασκαλίας οι οποίες φαίνεται να καλύπτουν τις αδυναμίες των συμβατικών μορφών. Η ενίσχυση της εξ –αποστάσεως εκπαίδευσης και η αύξηση του αγοραστικού της κοινού ανάγκασαν του εκπαιδευτικούς φορείς να προσαρμοστούν στα νέα δεδομένα. Έτσι έχοντας ως βασική υποδομή τις πλατφόρμες ηλεκτρονικής μάθησης και τις υπηρεσίες του Web 2.0 η εξ-αποστάσεως εκπαίδευση έχει καθιερωθεί όχι μόνο στους εκπαιδευτικούς φορείς αλλά και στα επιχειρηματικά προγράμματα κατάρτισης εργαζομένων . Σκοπός της πτυχιακής αυτής εργασίας είναι ο σχεδιασμός και η δημιουργία ενός διαδικτυακού μαθήματος, στην πλατφόρμα ηλεκτρονικής μάθησης Moodle, με στόχο την ανάπτυξη ικανοτήτων για το επάγγελμα του “Προγραμματιστή Διαδραστικής Πολιτιστικής Εμπειρίας” όπως αυτές εμφανίζονται στο ευρωπαϊκό πλαίσιο προσόντων e-cf. Βασικός προσανατολισμός της πτυχιακής εργασίας είναι να εκμεταλλευτεί τα εργαλεία τεχνολογίας που προσφέρονται προκειμένου να δημιουργηθεί ένα ηλεκτρονικό μάθημα βασισμένο στα μαθησιακά αποτελέσματα και να συνδέσει μέσω της χρήσης του πλαισίου προσόντων την αγορά εργασίας με την εκπαίδευση. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Σαλτού Ελένη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Οπτικοποίηση, Αναπαραστάσεις μαθηματικών εννοιών, Ρητοί αριθμοί, Άρρητοι αριθμοί, Ομοιότητα πολυγώνων, Διδακτικό πείραμα Σύνοψη: Η διδακτική των μαθηματικών μελετά το πώς μαθαίνουν τα παιδιά τις μαθηματικές έννοιες και διαδικασίες, ποιές και γιατί δυσκολεύονται να κατανοήσουν, και με ποιο τρόπο μπορούν να υπερβούν τα όποια γνωστικά εμπόδια προκύπτουν, για να τις κατανοήσουν. Σκοπός της εργασίας αποτελεί η μελέτη για το πώς συμβάλλει η γεωμετρική αναπαράσταση αυτών των εννοιών και διαδικασιών τόσο στη διδασκαλία τους, όσο και στην κατανόησή τους. Στην παρούσα διπλωματική εργασία παρουσιάζεται ακριβώς μια τέτοια διαδρομή, μια διδακτική, μερικά καθοδηγούμενη επαγωγή: από μια ευκολότερα κατανοήσιμη έννοια (την ομοιότητα σχημάτων) σε μια αρκετά πιο αφηρημένη και δύσληπτη έννοια, για τις πρώτες τάξεις του Γυμνασίου, αυτή του άρρητου αριθμού. Η διπλωματική εργασία αποτελείται από δύο κύρια μέρη. Στο πρώτο μέρος γίνεται επισκόπηση της σχετικής βιβλιογραφίας, με ανάλυση των σημαντικότερων αποτελεσμάτων ερευνητικών εργασιών που ασχολούνται με τις γεωμετρικές αναπαραστάσεις στη διδασκαλία των αρρήτων, και αναφορά σε εργασίες από το χώρο της εκπαιδευτικής και γνωστικής ψυχολογίας, καίριας σημασίας για την κριτική ανάλυση της προς μελέτη έννοιας. Παράλληλα, περιγράφεται το διδακτικό μοντέλο της καθοδηγούμενης ανακάλυψης. Στο δεύτερο μέρος, αρχικά, γίνεται παρουσίαση της μεθοδολογίας της έρευνας, της σχολικής τάξης όπου έγινε το διδακτικό πείραμα και της μεθόδου συλλογής των δεδομένων. Στη συνέχεια, γίνεται ανάλυση των αποτελεσμάτων της πραγματοποιηθείσας έρευνας, με έμφαση στην ανάλυση των διαλόγων, τη διαδικασία σκέψης των μαθητών, στα προβλήματα που ανακύπτουν και τους δυνητικούς τρόπους επίλυσής τους. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Καραμέρος Παναγιώτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Αξία σε κίνδυνο, Αναμενόμενο έλλειμα Σύνοψη: Η ποσοτικοποίηση του κινδύνου της αγοράς μέσω της Αξίας σε Κίνδυνο (Value at Risk), αποτελεί ένα χρήσιμο εργαλείο ελέγχου για ένα χρηματοοικονομικό οργανισμό προκειμένου να διασφαλίζεται η επάρκεια ρευστότητας και η ασφάλεια των επενδύσεων. Ωστόσο, η μαθηματική μοντελοποίηση του κινδύνου για ένα χαρτοφυλάκιο αποτελεί ένα δύσκολο εγχείρημα. Στη παρούσα διπλωματική εργασία εξετάζονται τεχνικές εκτίμησης της Αξίας σε Κίνδυνο, που αποτελεί ένα σημαντικό μέτρο κινδύνου και βασίζεται στην κατανομή των αποδόσεων ενός χαρτοφυλακίου. Αρχικά, παρουσιάζονται οι κατηγορίες οικονομικού κινδύνου και ο ρόλος που παίζουν τα μέτρα κινδύνου. Εισάγονται οι έννοιες της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος (Expected Shortfall) και μελετώνται πιθανοί τρόποι εκτίμησης τους. Η μελέτη επικεντρώνεται σε δύο κατανομές από τη θεωρία ακραίων τιμών, τη Γενικευμένη Κατανομή Ακραίων Τιμών και τη Γενικευμένη Pareto. Για την εκτίμηση των παραμέτρων των κατανομών αυτών επιλέγονται δεδομένα σύμφωνα με δύο τεχνικές. Αυτές είναι η μέθοδος Μεγίστων ανά Περίοδο (Block Maxima) και η μέθοδος Κορυφών πάνω από Κατώφλι (Peaks Over Threshold), οι οποίες παρουσιάζονται αναλυτικά. Η εκτίμηση των παραμέτρων μπορεί να γίνει με τη κλασσική μέθοδο της μέγιστης πιθανοφάνειας, όμως εδώ χρησιμοποιούνται εναλλακτικά και μέθοδοι Monte Carlo και Markov Chain Monte Carlo, όταν το πρόβλημα αντιμετωπίστηκε με μία Μπεϋζιανή οπτική. Πιο συγκεκριμένα, χρησιμοποιήθηκε η μέθοδος της δειγματοληψίας σπουδαιότητας (Importance Sampling) και ο υβριδικός δειγματολήπτης Gibbs, δηλαδή ένας δειγματολήπτης Gibbs στον οποίο τουλάχιστον μια προσομοίωση από την πλήρη δεσμευμένη κατανομή έχει αντικατασταθεί από ένα βήμα Metropolis, καθώς δεν μπορεί να γίνει απευθείας προσομοίωση από αυτή λόγω της πολύπλοκης μορφής της. Τέλος, χρησιμοποιήθηκε και η μη παραμετρική μέθοδος Hill, ως εναλλακτική των εκτιμήσεων που γίνονται με βάση τη Γενικευμένη Pareto. Για την πειραματική μελέτη των τεχνικών εκτίμησης της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος που αναφέρθηκαν προηγουμένως, χρησιμοποιήθηκαν πραγματικά δεδομένα κίνησης τεσσάρων χρηματιστηριακών δεικτών και τεσσάρων χρηματιστηριακών προϊόντων (μετοχών). Τέλος, για την εφαρμογή αξιοποιήθηκαν πακέτα διαθέσιμα στη στατιστική γλώσσα προγραμματισμού R ενώ συμπληρωματικά δημιουργήθηκε κώδικας R όπου αυτό απαιτήθηκε. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Αστεριώτη Φωτεινή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Υπογραφή συστήματος, Συνεχόμενο k-από-τα-n σύστημα, Συνάρτηση αξιοπιστίας Σύνοψη: Στην παρούσα εργασία παρουσιάζεται μία μελέτη ενός σημαντικού εργαλείου για την επίλυση μίας σειράς προβλημάτων στην αξιοπιστία συστημάτων, το οποίο ονομάζεται υπογραφή συστήματος (system signature). Πιο συγκεκριμένα, στο πρώτο κεφάλαιο της εργασίας δίνονται εισαγωγικές έννοιες της Θεωρίας Αξιοπιστίας. Εισάγεται η έννοια του μονότονου συστήματος και χρησιμοποιείται η συνάρτηση δομής και οι ιδιότητές της, ως μέσο για την μελέτη της απόδοσης ενός συστήματος και την σύγκρισή του με ένα άλλο σύστημα. Στη συνέχεια, δίνονται οι σχέσεις υπολογισμού της συνάρτησης δομής με τη βοήθεια των ελαχίστων συνόλων διαδρομής (minimal path sets) και αποκοπής (minimal cut sets). Παρουσιάζεται επίσης, η αξιοπιστία ενός συστήματος μέσω της συνάρτησης δομής του, και δίνεται η έννοια του δυϊκού ενός συστήματος. Στο δεύτερο κεφάλαιο εισάγεται η έννοια της υπογραφής ενός μονότονου συστήματος αξιοπιστίας, η οποία ορίζεται με τη βοήθεια των διατεταγμένων χρόνων ζωής των συνιστωσών του. Στη συνέχεια, παρουσιάζονται οι υπογραφές γνωστών συστημάτων και ο τρόπος υπολογισμού τους. Δίνονται ακριβείς τύποι για τον υπολογισμό της συνάρτησης επιβίωσης, καθώς και άλλων χαρακτηριστικών ενός συστήματος, όπως είναι ο ρυθμός αποτυχίας. Επίσης, εισάγονται οι έννοιες της minimal και maximal υπογραφής ενός μονότονου συστήματος. Διατυπώνονται τρεις διαφορετικοί τρόποι σύγκρισης της απόδοσης μονότονων συστημάτων, τα αποτελέσματα των οποίων στηρίζονται στη διάταξη των διανυσμάτων των υπογραφών τους. Επιπλέον, χρησιμοποιείται η έννοια της υπογραφής για να μελετηθεί ένα παράδειγμα στοχαστικής σύγκρισης συστημάτων που βασίζονται στην αρχή του πλεονασμού. Το τρίτο κεφάλαιο επικεντρώνεται στην υπογραφή των συνεχόμενων k-από-τα-n συστημάτων αποτυχίας. Αρχικά, παρουσιάζονται αναδρομικές σχέσεις που έχουν δοθεί για τον υπολογισμό της υπογραφής των συστημάτων αυτών, καθώς και εκφράσεις μέσω συνδυαστικής ανάλυσης. Δίνονται, επίσης, σχέσεις για την αξιοπιστία των συνεχόμενων συστημάτων, ως μίξη των αξιοπιστιών των διατεταγμένων χρόνων ζωής των συνιστωσών τους μέσω της υπογραφής του συστήματος. Τέλος, παρουσιάζονται συνθήκες διατήρησης της ιδιότητας γήρανσης IFR των συνεχόμενων k-από-τα-n συστημάτων αποτυχίας και συγκρίσεις των χρόνων ζωής διαφόρων συνεχόμενων συστημάτων αξιοπιστίας. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Σουρμελίδης Αθανάσιος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Υπερκυκλικοί τελεστές, Γραμμικό χάος Σύνοψη: Είναι ευρέως διαδεδομένο ότι η έννοια του χάους συνδέεται με τη μη γραμμικότητα. Αυτό οφείλεται στο γεγονός ότι διαισθητικά περιμένουμε από μία γραμμική απεικόνιση να παρουσιάζει μία ̔ ̔ προβλέψιμη ̓ ̓ συμπεριφορά. Κάτι το οποίο όμως δεν αληθεύει. Πρώτος ο G.D. Birkhoff (1929) βρήκε ένα παράδειγμα ενός τελεστή με ένα σημαντικό στοιχείο του χάους: ο τελεστής είχε πυκνή τροχιά. Στη συνέχεια ακολούθησαν οι G.R. Maclane (1952) και S. Rolewisz (1969), οι οποιοί βρήκαν επιπλέον παραδείγματα τελεστών με πυκνή τροχιά. Παρακινούμενοι από αυτά τα παραδείγματα, πολλοί ερευνητές άρχισαν να μελετούν την έννοια του χάους υπό το πρίσμα της γραμμικότητας, ονομάζοντας τους τελεστές με πυκνή τροχιά υπερκυκλικούς. Το καθοριστικό βήμα έγινε από τους G. Godefroy και J.H. Shapiro (1991), οι οποίοι όχι μόνο ανακάλυψαν καινούργιες κλάσεις υπερκυκλικών τελεστών, αλλά πρότειναν επίσης να γίνει αποδεκτός ο ορισμός του (μη γραμμικου) χάους, που είχε δοθει από τον Devaney, ως ο ορισμός του γραμμικού χάους: ́Ενας τελεστής είναι χαοτικός αν: 1) έχει πυκνή τροχιά, 2) έχει ευαίσθητη εξάρτηση στις αρχικές συνθήκες, 3) το σύνολο των περιοδικών του σημείων είναι πυκνό. Σκοπός αυτής της εργασίας, η οποία βασίζεται στο βιβλίο Linear Chaos των Karl-G. Grosse- Erdmann και A.Peris Manguillot, είναι να γίνει μία εισαγωγή στη θεωρία των υπερκυκλικών τελεστών και ταυτόχρονα να παρουσιαστούν ορισμένα από τα πιο θεμελιώδη θεωρήματα της θεωρίας αυτής. Στο 1ο κεφάλαιο γίνεται μία εισαγωγή στη θεωρία των δυναμικών συστημάτων (όχι απαραίτητα γραμμικών) και παρουσιάζονται ορισμένα αποτελέσματα με βασικότερο αυτών, το θεώρημα του Birkhoff που δίνει μία συνθήκη ώστε μία απεικόνιση να έχει πυκνή τροχιά. Στο 2ο κεφάλαιο γίνεται η κατασκευή των χώρων Fr ́echet, που είναι μία γενίκευση των χώρων Banach και στη συνέχεια μεταφέρουμε τα αποτελέσματα του 1ου κεφαλαίου πάνω σε γραμμικά δυναμικά συστήματα. Στο 3ο κεφάλαιο παρουσιάζονται ορισμένα κριτήρια που αν ικανοποιεί ένας τελεστής, θα είναι υπερκυκλικός ή ακόμα και χαοτικός, με τελικό το κριτήριο Υπερκυκλικότητας. Στο 4ο κεφάλαιο παρουσιάζονται δύο από τα σπουδαιότερα θεωρήματα της θεωρίας των υπερκυκλικών τελεστών: 1)το θεώρημα της Ansari, 2)το θεώρημα των Bourdon-Feldmann. Στο 5ο κεφάλαιο παρουσιάζεται μία από τις πιο πρόσφατες έννοιες στη θεωρία των υπερκυκλικών τελεστών και που έχει γεννηθεί από την εργοδική θεωρία: αυτή της συχνής υπερκυκλικότητας. Τέλος, στο 6ο κεφάλαιο μελετάται η ύπαρξη κοινών υπερκυκλικών διανυσμάτων μίας υπερα- ριθμήσιμης οικογένειας τελεστών. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Ντοκομέ Αγλαΐα-Παρασκευή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ποιότητα, Συστήματα διασφάλισης ποιότητας, Εργασία Σύνοψη: Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η ανάλυση και η διερεύνηση παραγόντων, οι οποίοι διαμορφώνουν το περιβάλλον εργασίας με την εγκατάσταση συστημάτων διασφάλισης ποιότητας. Για την άντληση πληροφοριών και την εξαγωγή συμπερασμάτων έγιναν δομημένες συνεντεύξεις σε εργαζόμενους συγκεκριμένων επιχειρήσεων με συστήματα διασφάλισης ποιότητας. Στην αρχή της εργασίας γίνεται εισαγωγή σε σημαντικές έννοιες όπως η ποιότητα, τα συστήματα διασφάλισης ποιότητας καθώς τα πρότυπα. Στη συνέχεια, αναφέρεται η έννοια του προτύπου και οι αντίστοιχες απαιτήσεις. Περιγράφεται αναλυτικά η διαδικασία πιστοποίησης επιχειρήσεων και παρατίθονται τα οφέλη που προκύπτουν από αυτή. Στα τελευταία κεφάλαια της εργασίας παρουσιάζεται η επεξεργασία των δεδομένων, η ανάλυση των αποτελεσμάτων καθώς και η εξαγωγή των συμπερασμάτων της έρευνας. Εν συνεχεία πραγματοποιείται σχολιασμός σε σχέση με τα δεδομένα της βιβλιογραφικής έρευνας που έγινε στα προηγούμενα κεφάλαια . Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τσιφτιλή Μαρία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ποιότητα, Συστήματα διασφάλισης ποιότητας Σύνοψη: Σκοπός αυτής της διπλωματικής εργασίας είναι η όσο το δυνατόν καλύτερη προσέγγιση της έννοιας της Ποιότητας και των Συστημάτων Διαχείρισης Ποιότητας, έννοιες πολύ βασικές αναφορικά με την εργασιακή οργάνωση και συμπεριφορά. Η εργασία δομείται σε τέσσερα κύρια κεφάλαια καθένα από τα οποία πραγματεύεται ένα διαφορετικό θέμα. Πιο συγκεκριμένα, αρχικά παρατίθενται λεπτομέρειες για τις βασικές αρχές της σειράς ISO 9000 καθώς και για τα πρότυπα που αυτή περιλαμβάνει, στη συνέχεια αναλύεται το πρότυπο Διαχείρισης Ποιότητας ISO 9001, οι βασικές αρχές του και οι απαιτήσεις του, όπως και ο τρόπος με τον οποίo μια επιχείρηση μπορεί να εφαρμόσει ένα ευέλικτο Σύστημα Διαχείρισης Ποιότητας με σκοπό την ικανοποίηση του πελάτη και τη συνεχή βελτίωση. Τέλος γίνεται επεξεργασία των δεδομένων, τα οποία συλλέχθηκαν με τη βοήθεια ερωτηματολογίου και αναλύθηκαν με τη χρήση του στατιστικού πακέτου SPSS 20.00. Η εργασία ολοκληρώνεται με την εξαγωγή των συμπερασμάτων και την παράθεση της βιβλιογραφίας από όπου αντλήθηκαν οι κυρίαρχες πηγές για τη συγγραφή του παρόντος πονήματος. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Αντωνέλου Γεωργία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Εξόρυξη δεδομένων, Σύστημα διαχείρισης μάθησης, Κατηγοριοποίηση, Παλινδρόμηση, Πρόβλεψη Σύνοψη: Τα τελευταία χρόνια πολλά Εκπαιδευτικά Ιδρύματα έχουν υιοθετήσει Διαδικτυακές Πλατφόρμες Μάθησης, όπως Συστήματα Διαχείρισης Μάθησης (Learning Management Systems) και άλλες Διαδικτυακές Εφαρμογές. Η δυνατότητα της λεπτομερούς καταγραφής και αποθήκευσης μεγάλου όγκου δεδομένων (Big Data), καθιστά αυτά τα Συστήματα μια δεξαμενή «κρυμμένης» γνώσης η οποία μπορεί να αποκαλυφθεί με διάφορους μηχανισμούς εξόρυξης (Εξόρυξη Γνώσης από Εκπαιδευτικά Δεδομένα- Educational Data Mining & Learning Analytics). Η ερμηνείας της γνώσης αυτής, δύναται να συνεισφέρει στη λήψη αποφάσεων σε πολλά επίπεδα και κυρίως στη βελτίωση των εκπαιδευτικών και μαθησιακών διαδικασιών που συνδέονται άμεσα με την Εκπαίδευση. Σκοπός της παρούσας διπλωματικής εργασίας είναι η εξόρυξη και αξιοποίηση των δεδομένων και των πληροφοριών που προέρχονται από τη Διαδικτυακή Πλατφόρμα του Ελληνικού Ανοικτού Πανεπιστημίου- ενός εκπροσώπου της εξ Αποστάσεως Εκπαίδευσης- εφαρμόζοντας κατάλληλες μεθόδους και τεχνικές Εξόρυξης Γνώσης σε Εκπαιδευτικά Δεδομένα (EDM). Συγκεκριμένα, παρουσιάζεται μια μελέτη (Case Study) Εξόρυξης Δεδομένων από την Διαδικτυακή Πλατφόρμα Moodle του ΕΑΠ, στο πλαίσιο της Θεματική Ενότητας ΠΛΗ37 «Πληροφορική και Εκπαίδευση» κατά τη διάρκεια ενός ακαδημαϊκού έτους. Πρόκειται για ένα πρόβλημα πρόβλεψης μαθησιακών αποτελεσμάτων (Predicting the Course Outcomes) με τη βοήθεια ενός προβλεπτικού μοντέλου της επίδοσης τελικής εξέτασης στο πλαίσιο της ΘΕ ΠΛΗ37. Η εύρεση του κατάλληλου προβλεπτικού μοντέλου (ή αλλιώς «Κατηγοριοποιητή» - classifier) πραγματοποιήθηκε με τη χρήση κατάλληλης προσέγγισης της μεθόδου Κατηγοριοποίησης (Classification) και διεξήλθε με τη βοήθεια λογισμικών εφαρμογής Αλγορίθμων Εξόρυξης Δεδομένων (Weka, R Programming). Οι ερευνητικές προεκτάσεις της παρούσας έρευνας, όπως προκύπτει και από σχετική βιβλιογραφική ανασκόπηση, είναι η συνδρομή/συνεισφορά κατάλληλων προβλεπτικών μεθόδων (στην τρέχουσα περίπτωση της Κατηγοριοποίησης (Classification) και Παλινδρόμησης (Regression)) για την αντιμετώπιση φαινομένων μη-επιτυχούς επίδοσης των φοιτητών σε μια ΘΕ καθώς και φαινομένων εγκατάλειψης (dropouts) μιας ΘΕ. Επομένως, η αξιοποίηση έγκαιρων και αξιόπιστων πληροφοριών (όπως η πρόβλεψη ακαδημαϊκής επιτυχίας-επίδοσης φοιτητή κ.ά) συντελεί καταλυτικά στη λήψη αποφάσεων και κατ’ επέκταση στην πολύ-επίπεδη βελτίωση (εκπαιδευτικό, μαθησιακό, οργανωτικό, διοικητικό) των Εκπαιδευτικών Δομών. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαμιχαήλ Αναστασία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Παίγνια, Στρατηγική, Ισορροπία Nash, Παίχτες, Δημοπρασίες Σύνοψη: Η παρούσα διπλωματική εργασία πραγματεύεται τη Θεωρία Παιγνίων που αποτελεί ένα από τα πιο σημαντικά εργαλεία της Επιχειρησιακής Έρευνας και επιλύει περιπτώσεις πολλών ληπτών αποφάσεων σε περιβάλλον ανταγωνιστικών συμπεριφορών. Η Θεωρία Παιγνίων προέρχεται από τον κλάδο των εφαρμοσμένων μαθηματικών και εφαρμόζεται σε ολοένα και περισσότερους τομείς της επιστήμης και της ζωής, με κυρίαρχο τον τομέα της Οικονομίας. Στο 1ο κεφάλαιο αναφέρονται η ιστορική αναδρομή και οι βασικές αρχές της Επιχειρησιακής Έρευνας. Στο 2ο κεφάλαιο εισαγόμαστε στη Θεωρία Παιγνίων, περιγράφουμε τις ποικίλες εφαρμογές της σε όλους τους τομείς της ζωής και αναλύουμε τις βασικές έννοιες της και τους τρόπους αναπαράστασης. Στο 3ο κεφάλαιο περιγράφονται τα βασικά παίγνια δύο παικτών μηδενικού αθροίσματος καθώς και ο τρόπος επίλυσής τους είτε μέσω αμιγών είτε μεσω μικτών στρατηγικών. Συνεχίζοντας, στο 4ο κεφάλαιο ορίζουμε τα στρατηγικά παίγνια, την κυριαρχία των στρατηγικών, όπως επίσης και τα κλασικά παίγνια μη μηδενικού αθροίσματος, συμπεριλαμβανομένου του γνωστού «Prisoner’s Dilemma» και των εφαρμογών του. Στο 5ο κεφάλαιο περιγράφουμε την ισορροπία Nash για παίγνια με αμιγείς και μικτές στρατηγικές και αναλύουμε τη διαδικασία εύρεσης της βέλτιστης λύσης στρατηγικού παιγνίου με την παράθεση κατάλληλων παραδειγμάτων και με τη χρήση του λογισμικού Gambit. Έπειτα, μέσω του 6ου κεφαλαίου μαθαίνουμε για τα εκτεταμένα παίγνια με τέλεια πληροφόρηση, τις λύσεις τους καθώς και τον τρόπο εύρεσης της ισορροπίας Nash. Τα συμμαχικά παίγνια, που είναι ένα ακόμα είδος παιγνίων, αναλύονται στο 7ο κεφάλαιο και κατανοούνται από την εφαρμογή τους στα αντίστοιχα παραδείγματα. Τέλος στο 8ο κεφάλαιο μαθαίνουμε σχετικά με μία σπουδαία και πολύ χρήσιμη στις μέρες μας εφαρμογή της Θεωρίας Παιγνίων που είναι οι δημοπρασίες. Εκεί καταγράφονται τα βασικά μεγέθη των δημοπρασιών, περιγράφονται τα πολλά είδη τους, ενός ή πολλών αντικειμένων, ορίζονται οι Μπεϋζιανές δημοπρασίες όπως επίσης και οι γνωστές σε όλους μας ηλεκτρονικές δημοπρασίες που χρησιμοποιούνται ευρέως στο διαδίκτυο. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κοκκινάκης Δημήτρης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ωρίμανση Ostwald, Συστήματα μη γραμμικών ΣΔΕ, Aνάλυση ευστάθειας Σύνοψη: Η ωρίμανση κατά Ostwald είναι η διεργασία μέσω της οποίας ένα σύνολο κρυστάλλων δαφόρων μεγεθών, μέσα σε ένα διάλυμα, καταλήγει στην κατάσταση όπου υπάρχουν πλέον μόνο κρύσταλλοι ενός συγκεκριμένου μεγέθους. Οι κρύσταλλοι μικρότερου μεγέθους διαλύονται, αυξάνοντας έτσι τη συγκέντρωση του διαλύματος, ενώ οι μεγαλύτεροι κρύσταλλοι με τη σειρά τους αντλούν υλικό από το διάλυμα και κατά συνέπεια διευρύνουν το μέγεθός τους. Αυτή η ανταλλαγή υλικού έχει ως αποτέλεσμα την επικράτηση των αρχικά μεγαλύτερων κρυστάλλων. Το τελικό τους μέγεθος καθορίζεται με τέτοιο τρόπο, ώστε να είναι σε πλήρη ισορροπία με την τελική συγκέντρωση του διαλύματος. Στην παρούσα διπλωματική εργασία εισάγουμε το μαθηματικό μοντέλο της παραπάνω διεργασίας, το οποίο περιγράφεται από ένα σύστημα Ν συζευγμένων μη-γραμμικών συνήθων διαφορικών εξισώσεων (με Ν το πλήθος των διαφορετικών μεγεθών μέσα στο διάλυμα). Επιλύοντας το παραπάνω μοντέλο παρακολουθούμε τη χρονική εξέλιξη του συστήματος. Επικεντρώνουμε την προσοχή μας στις διαδοχικές στιγμές μηδενισμού των μικρότερων κρυστάλλων, καθώς επίσης στα χαρακτηριστικά της τελικής κατάστασης ισορροπίας για t → ∞. Τέλος, παρουσιάζουμε τη σύνδεση του συστήματός μας με διάφορες άλλες εφαρμογές της ωρίμανσης Ostwald, όπως η εξάπλωση και εξέλιξη μιας επιδημικής νόσου καθώς και μια παραλλαγή της διεργασίας έτσι ώστε η τελική κατάσταση ισορροπίας να παρουσιάζει ταλαντωτική συμπεριφορά. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παλαιολόγος Δημοσθένης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Πιθανότητες, Συναρτήσεις, Μαθηματικά λυκείου Σύνοψη: Ο σκοπός που γράφτηκε η παρούσα διπλωματική είναι: α) Να γίνει μια σύντομη αναδρομή στην ιστορία του διδακτικού βιβλίου στο Ελληνικό Εκπαιδευτικό σύστημα. Να δούμε πως το σχολικό βιβλίο βοήθησε να ανθίσει η τυπογραφία στο νεοσύστατο Ελληνικό κράτος. Θα αναφερθούμε επιγραμματικά στις γενικές επιστημονικές, παιδαγωγικές, και διδακτικές αρχές, που πρέπει να πληροί το σχολικό βιβλίο των Μαθηματικών σύμφωνα με το Ινστιτούτο Εκπαιδευτικής Πολιτικής. Θα αναφέρουμε τον τρόπο που γίνεται ο ορισμός της συγγραφικής ομάδος καθώς και την διαδικασία έκδοσης και διανομής των σχολικών βιβλίων. β) Να δούμε ποιός είναι ο γενικός σκοπός διδασκαλίας των Μαθηματικών στο Γυμνάσιο και στο Λύκειο όπως αυτός καθορίζεται μέσα από τα Προγράμματα Σπουδών. Να αναφέρουμε το νομοθετικό πλαίσιο που οριοθετεί την διδασκαλία των Μαθηματικών στις διάφορες βαθμίδες της Δευτεροβάθμιας εκπαίδευσης. Να εξετάσουμε αν οι ώρες που διδάσκονται τα Μαθηματικά σύμφωνα με το ωρολόγιο πρόγραμμα είναι αρκετές για να προσφερθεί η προβλεπόμενη από το θεσμικό πλαίσιο μαθηματική παιδεία. γ) Να παρουσιάσουμε περιληπτικά την ύλη που διδάσκεται στο Γυμνάσιο. Θα αναφερθούμε επιγραμματικά στις βασικές έννοιες που διδάσκονται και αποτελούν τον βασικό κορμό της Μαθηματικής εκπαίδευσης στο Γυμνάσιο, καθώς και στις δευτερεύουσες Μαθηματικές έννοιες όπως αυτές παρουσιάζονται σε κάθε τάξη. δ) Να παρουσιάσουμε την ύλη που διδάσκονται οι μαθητές στα Μαθηματικά Γενικής Παιδείας στο μάθημα της ''Άλγεβρας'' στην Α, Β Λυκείου και στα ''Μαθηματικά και Στοιχεία Στατιστικής'' στην Γ Λυκείου. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τσίνος Χρήστος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Διακριτοποίηση ΣΔΕ, Μέθοδος Kahan, Ολοκληρωσιμότητα, Βάσεις Ηirota-Kimura Σύνοψη: Στην παρούσα διπλωματική εργασία μελετάμε τις ολοκληρώσιμες διακριτοποιήσεις «τύπου Kahan» σε γνωστά συστήματα συνήθων διαφορικών εξισώσεων. Η συγκεκριμένη μέθοδος μπορεί να εφαρμοστεί σε κάθε δευτεροβάθμειο πολυωνυμικό διανυσματικό πεδίο και εμφανίστηκε επίσης σε εργασίες των Hirota και Kimura. Λόγω ενός μηχανισμού που ακόμα δεν έχει κατανοηθεί πλήρως, τέτοιες διακριτοποιήσεις φαίνεται να κληρονομούν την ολοκληρωσιμότητα των αλγεβρικά πλήρως ολοκληρώσιμων συστημάτων, όπως έχει δειχθεί σε εργασίες των Petrera και συνεργατών. Ο στόχος της παρούσας εργασίας είναι η μελέτη και η εφαρμογή της ευρετικής αυτής μεθόδου για την διερεύνηση της ολοκληρωσιμότητας διακριτοποιήσεων σε γνωστά συστήματα διαφορικών εξισώσεων. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαδήμα Νίκη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Γάμμα συνάρτηση, Βήτα συνάρτηση Σύνοψη: Η συνάρτηση Γάμμα του Euler είναι μία από τις πλέον βασικές ειδικές συναρτήσεις, όχι μόνον της ανάλυσης αλλά και της μαθηματικής φυσικής. Η συνεχής έρευνα στην περιοχή των μαθηματικών και της φυσικής, δημιούργησε την ανάγκη επέκτασης της συνάρτησης Γάμμα. Μία από τις επεκτάσεις είναι η q-Γάμμα συνάρτηση, η οποία έγινε με την εισαγωγή του q-λογισμού. Στην εργασία αυτή, συγκεντρώνονται και καταγράφονται οι ιδιότητες της q-Γάμμα συνάρτησης, καθώς και ανισότητες, που ικανοποιούν οι συναρτήσεις αυτές και σχετικές με αυτές συναρτήσεις, οι οποίες προκύπτουν, κυρίως, από ιδιότητες μονοτονίας αυτών. Στο πρώτο κεφάλαιο της εργασίας αναφέρονται οι γνωστές ιδιότητες της συνάρτησης Γάμμα. Στο δεύτερο κεφάλαιο παρουσιάζονται τα βασικά απαραίτητα στοιχεία του q λογισμού. Στο τρίτο κεφάλαιο ορίζονται οι συναρτήσεις q-Γάμμα, q-Βήτα και q-ψ(x) καθώς και γίνεται αναφορά στις ιδιότητες που ισχύουν για αυτές. Στο τέταρτο κεφάλαιο αναφέρονται ιδιότητες μονοτονίας συναρτήσεων που περιέχουν q-Γάμμα συναρτήσεις καθώς και ανισότητες που ικανοποιούν οι συναρτήσεις αυτές. Τα αποτελέσματα, που καταγράφονται , είναι συγκεντρωμένα από επιστημονικές εργασίες, που έχουν δημοσιευτεί, σχετικές με τις q-Γάμμα συναρτήσεις και πολλά εξ αυτών είναι γενικεύσεις ανάλογων αποτελεσμάτων που αφορούν σε Γάμμα συναρτήσεις. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Σιμαγιά Σταυρούλα
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2011
Λέξεις Κλειδιά: Λογισμός των μεταβολών, Άμεσες μέθοδοι Σύνοψη: Στο πέρασμα των αιώνων, οι άνθρωποι αναζητούσαν νόμους που να περιγράφουν τα φαινόμενα του φυσικού κόσμου. Το 1744 ο Γάλλος επιστήμονας Pierre Louis Moreau de Maupertious έθεσε την αρχή ότι η φύση ενεργεί πάντα με τέτοιο τρόπο ώστε να ελαχιστοποιείται κάποια ποσότητα που ο ίδιος ονόμασε «δράση». Στη μαθηματική θεμελίωση της σχετικής θεωρίας των μεγίστων και ελαχίστων των βαθμωτών ποσοτήτων συνέβαλλε ο Ελβετός μαθηματικός Leonard Euler. Στα προβλήματα του Λογισμού των Μεταβολών μελετάμε παραστάσεις που περιέχουν μία ή περισσότερες άγνωστες πραγματικές συναρτήσεις μιας ή περισσοτέρων πραγματικών μεταβλητών. Έτσι, αναζητούμε μια συνάρτηση που να δίνει στη συγκεκριμένη παράσταση μέγιστη ή ελάχιστη τιμή. Οι παραστάσεις αυτές ονομάζονται συναρτησιακά και αποτελούν μια γενίκευση της έννοιας της συνάρτησης. H διπλωματική αυτή εργασία αποτελεί μια βιβλιογραφική επισκόπηση των άμεσων μεθόδων που χρησιμοποιούνται στην επίλυση των προβλημάτων του λογισμού των μεταβολών.Κάτω από αυτό το πρίσμα, παρουσιάζονται οι προσεγγιστικές λύσεις, η εφαρμογή τους καθώς και οι πρόσφατες βελτιώσεις τους. Συγκεκριμένα, στο κεφάλαιο 1 αναφέρονται κάποιες βασικές έννοιες του λογισμού των μεταβολών . Στο κεφάλαιο 2 γίνεται λόγος για τέσσερις άμεσες μεθόδους επίλυσης συναρτησιακών προβλημάτων. Στο κεφάλαιο 3 περιγράφονται τέσσερις μέθοδοι, οι οποίες προσεγγίζουν τη λύση μη γραμμικών προβλημάτων του λογισμού των μεταβολών με ακρίβεια 2ης τάξης ως συνάρτηση του μήκους βήματος. Στο κεφάλαιο 4 παρουσιάζονται κάποιες νέες τεχνικές επίλυσης των προβλημάτων που συζητήθηκαν. Στο κεφάλαιο 5 αναφέρεται η χρήση υποπρογραμμάτων (“packages”) που χρησιμοποιούνται μέσω συστημάτων λογισμικού όπως το Maple και το Mathematica. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Χουντής Βασίλειος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2010
Λέξεις Κλειδιά: Διαχωριστική ανάλυση, Λογιστική παλινδρόμηση Σύνοψη: Στην σημερινή εποχή είναι μεγάλη η ανάγκη να κατατάσσουμε παρατηρήσεις σε γνωστές ομάδες - πληθυσμούς καθώς επίσης και να κάνουμε προβλέψεις. Υπάρχουν πολλές μέθοδοι που κάνουν ή σκοπό έχουν να κατατάσσουν παρατηρήσεις. Στην διπλωματική εργασία περιγράφω δυο από τις σημαντικότερες μεθόδους που χρησιμοποιούνται ευρέως στην στατιστική, την διαχωριστική ανάλυση (discriminant analysis) και την λογιστική παλινδρόμηση (logistic regression). Στο πρώτο μέρος αναφέρω τι είναι η διαχωριστική ανάλυση, δίνω συνοπτικά μερικές εφαρμογές της μεθόδου και περιγράφω την διαφορά από την ανάλυση σε συστάδες. Στην συνέχεια αναλύω τον διαχωρισμό δυο πληθυσμών που ακολουθούν την κανονική κατανομή και τα κριτήρια που πρέπει να λάβουμε υπόψη. Στόχος μας είναι να κατασκευάσουμε μια συνάρτηση που θα διαχωρίζει όσο το δυνατόν καλύτερα τους δυο πληθυσμούς. Πρέπει να σημειώσουμε ότι δεν υπάρχει τέλειος διαχωρισμός, δηλαδή ενδέχεται η συνάρτηση να κατατάσσει λανθασμένα μια παρατήρηση σε μια από τις δυο ομάδες. Για αυτό πρέπει να λάβουμε υπόψη τα κόστη λανθασμένης κατάταξης και τις εκ των προτέρων πιθανότητες. Ο βέλτιστος διαχωρισμός θα πραγματοποιηθεί αν καταφέρουμε να ελαχιστοποιήσουμε το κόστος λανθασμένης κατάταξης. Στο τμήμα 3 βρίσκω την συνάρτηση κατάταξης όταν οι δυο πληθυσμοί έχουν ίσους πίνακες διασποράς (γραμμικός κανόνας κατάταξης) αλλά και όταν έχουν άνισες διασπορές (τετραγωνικός κανόνας κατάταξης). Εφόσον, έχω φτιάξει την συνάρτηση κατάταξης το επόμενο βήμα είναι να την αξιολογήσω. Περιγράφω δυο τρόπους αξιολόγησης (επικύρωσης), τον υπολογισμό του ρυθμού σφάλματος και την holdout διαδικασία. Στο τμήμα 5 αναφέρω την διαχωριστική ανάλυση του Fisher, τι υποθέσεις έκανε και πως κατάφερε να φτάσει στην ίδια συνάρτηση κατάταξης. Στην συνέχεια κάνω μια γενίκευση της διαχωριστικής ανάλυσης αν έχω g πληθυσμούς και δίνω το νέο τύπο της συνάρτησης κατάταξης όταν έχω ίσους και άνισους πίνακες διασποράς (γραμμικό – τετραγωνικό διαχωριστικό σκορ). Ερμηνεύω γεωμετρικά το γραμμικό διαχωριστικό σκορ. Στο τελευταίο τμήμα μελετάω την μέθοδο του Fisher όταν έχω g πληθυσμούς και αποδεικνύω μερικά θεωρήματα. Στο δεύτερος μέρος της διπλωματικής περιγράφω μια άλλη διαδικασία κατάταξης, την λογιστική παλινδρόμηση. Δίνω συνοπτικά μερικές εφαρμογές της μεθόδου και αναλύω πότε χρησιμοποιούμε αυτή την μέθοδο. Ξεκινώντας από το απλό γραμμικό μοντέλο παλινδρόμησης , αναφέρω τα προβλήματα που έχουμε τώρα που η μεταβλητή είναι δυαδική και πως τα αντιμετωπίζουμε, καταλήγοντας στην μορφή που έχει η απλή λογιστική συνάρτηση. Περιγράφω τις ιδιότητες της λογιστικής αποκρινόμενης συνάρτησης και πως προσαρμόζουμε το λογιστικό μοντέλο παλινδρόμησης χρησιμοποιώντας τους εκτιμητές μέγιστης πιθανοφάνειας. Κατόπιν δίνω την ερμηνεία του συντελεστή παλινδρόμησης και δίνω την μορφή της λογαριθμικής συνάρτησης πιθανοφάνειας όταν έχω επαναλαμβανόμενες παρατηρήσεις. Στο τμήμα 4 περιγράφω το πολλαπλό λογιστικό μοντέλο παλινδρόμησης και στο τμήμα 5 πως κατασκευάζεται το μοντέλο. Ελέγχω αν μπορούμε να παραλείψουμε μερικές προβλέπουσες μεταβλητές, χρησιμοποιώντας ένα στατιστικό που λέγεται μοντέλο απόκλισης, αλλά και από τον έλεγχο του λόγου πιθανοφάνειας. Προτού όμως χρησιμοποιήσω το μοντέλο στην πράξη εξετάζω την καταλληλότητα του, δηλαδή αν ικανοποιεί τις ιδιότητες της λογιστικής αποκρινόμενης συνάρτησης και αναζητώ τα outliers και τις παρατηρήσεις που έχουν την μεγαλύτερη επιρροή. Στα τμήματα 7 και 8 περιγράφω τα συμπεράσματα για τις παραμέτρους της λογιστικής παλινδρόμησης και για τον αποκρινόμενο μέσο, ενώ στο τμήμα 9 αναφέρω πως γίνεται η πρόβλεψη καινούριων παρατηρήσεων. Τελειώνοντας αναφέρω την πολύτομη λογιστική παλινδρόμηση και περιγράφω συνοπτικά τις ομοιότητες- διαφορές της διαχωριστικής ανάλυσης και της λογιστικής παλινδρόμησης. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Καρατράντου Ανθή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2009
Λέξεις Κλειδιά: Έμπειρα συστήματα, Συντελεστές βεβαιότητας, Πρόβλεψη βασισμένη σε γνώση, Απόδοση μαθητών, Νευρωνικά δίκτυα Σύνοψη: Στην εργασία αυτή παρουσιάζεται η χρήση τεχνολογίας Έμπειρων Συστημάτων για την πρόβλεψη της επιτυχίας ενός μαθητή Τ.Ε.Ε. στις εισαγωγικές πανελλαδικές εξετάσεις στα Α.Τ.Ε.Ι. και η απόδοσή της συγκρίνεται με αυτή της Ανάλυσης Λογιστικής Παλλινδρόμησης και των Νευρωνικών Δικτύων. Είναι σημαντικό για τους καθηγητές, αλλά και τη διοίκηση του σχολείου, να είναι σε θέση να εντοπίζουν τους μαθητές με υψηλή πιθανότητα αποτυχίας ή χαμηλής απόδοσης ώστε να τους βοηθήσουν κατάλληλα. Για το σκοπό της παρούσας εργασίας αναπτύσσεται Έμπειρο Σύστημα βασισμένο σε κανόνες, το οποίο υλοποιείται σε δυο εκδοχές: η πρώτη χρησιμοποιεί τους συντελεστές βεβαιότητας του MYCIN και η δεύτερη μια γενικευμένη εκδοχή της σχέσης των συντελεστών αβεβαιότητας του MYCIN με τη βοήθεια αριθμητικών βαρών για κάθε συντελεστή βεβαιότητας (PASS). Ο σχεδιασμός του έμπειρου συστήματος σε κάθε περίπτωση, η ανάλυση Λογιστικής Παλινδρόμησης και η ανάπτυξη Νευρωνικού Δικτύου βασίζονται στην ανάλυση δημογραφικών και εκπαιδευτικών δεδομένων των μαθητών, κυρίως όμως στην ανάλυση δεδομένων της απόδοσής τους κατά τις σπουδές τους (Φύλο, Ηλικία, Ειδικότητα, Βαθμός Α (ο Γενικός Βαθμός της Α’ Τάξης), Βαθμός Β (Γενικός Βαθμός της Β’ τάξης) και Βαθμός ΑΓ (ο Μέσος Όρος των βαθμών στα τρία εξεταζόμενα μαθήματα κατά το Α’ τετράμηνο σπουδών). Με δεδομένο το ότι η πρόβλεψη της επιτυχίας ή μη ενός μαθητή στις εισαγωγικές εξετάσεις εμπεριέχει ένα μεγάλο βαθμό αβεβαιότητας, η αβεβαιότητα αυτή έχει καθοριστικό ρόλο στη σχεδίαση του έμπειρου συστήματος σε κάθε εκδοχή του. Το Έμπειρο Σύστημα PASS, η Ανάλυση Λογιστικής Παλινδρόμησης και τα Νευρωνικά Δίκτυα έχουν περίπου την ίδια ακρίβεια στην πρόβλεψή τους ενώ το MYCIN μικρότερη. Το MYCIN εμφανίζει την υψηλότερη ευαισθησία. Το Έμπειρο Σύστημα PASS, η Ανάλυση Λογιστικής Παλινδρόμησης και τα Νευρωνικά Δίκτυα έχουν περίπου την ίδια ειδικότητα, με το PASS να έχει ελαφρώς υψηλότερη τιμή ενώ το MYCIN έχει την χαμηλότερη τιμή. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Ρουστέμογλου Ήλια
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2009
Λέξεις Κλειδιά: Σολιτόνια, Ζεύγη Lax, Μέθοδος ένδυσης, Πρόβλημα Riemann-Hilbert, Πρόβλημα d-bar Σύνοψη: Όπως μπορεί κανείς να καταλάβει και από τον τίτλο, η εργασία έχει να κάνει με μία μέθοδο επίλυσης μη γραμμικών μερικών διαφορικών εξισώσεων και, συγκεκριμένα, μιας οικογένειας τέτοιων εξισώσεων, που ονομάζονται εξισώσεις εξέλιξης. Πολλές από αυτές, μάλιστα, επιδέχονται ειδικού τύπου λύσεις που είναι γνωστές με το όνομα σολιτόνια (solitons). Αρχικά, μας απασχολεί η έννοια της ολοκληρωσιμότητας, για την οποία όμως δεν υπάρχει κάποιος σαφής ορισμός. Παρ' όλα αυτά, μπορούμε να πούμε ότι μία διαφορική εξίσωση καλείται ολοκληρώσιμη όταν μπορεί να γραμμικοποιηθεί άμεσα ή έμμεσα. Ο όρος έμμεση γραμμικοποίηση συνδέεται με την έννοια της ύπαρξης ζευγαριού Lax, την οποία εξηγούμε χρησιμοποιώντας εργαλεία της θεωρίας τελεστών. Για τις μη γραμμικές εξισώσεις εξέλιξης, έχει αναπτυχθεί πλέον πλήθος μεθόδων ανάλυσης, στα πλαίσια της ολοκληρωσιμότητας, και υπάρχει πλούσια σχετική βιβλιογραφία. Αναφέρουμε συνοπτικά μερικές από αυτές χρησιμοποιώντας κάποια παραδείγματα, ενώ επικεντρωνόμαστε στην αναλυτική περιγραφή μιας μεθόδου που πρώτοι παρουσίασαν οι Zakharov και Shabat το 1974. Η μέθοδος αυτή, η οποία αναπτύχθηκε λίγο μετά τη μέθοδο της αντίστροφης σκέδασης, ονομάζεται μέθοδος ένδυσης (dressing method) ή σχήμα των ZS. Για την παρουσίασή της, χρησιμοποιούμε μόνο τελεστές χωρίς να αναφερόμαστε πουθενά στα δεδομένα σκέδασης του προβλήματος. Εισάγουμε, με τη βοήθεια διαφορικών και ολοκληρωτικών τελεστών, το γυμνό (undressed) και το ντυμένο (dressed) τελεστή και, έπειτα, δείχνουμε πώς από αυτούς προκύπτει η γενικευμένη εξίσωση Lax. Παραθέτουμε κάποια παραδείγματα εξισώσεων στις οποίες εφαρμόζεται η μέθοδος και, τέλος, κατασκευάζουμε σολιτονικές λύσεις για τη μη γραμμική εξίσωση του Schrödinger, με τη βοήθεια της ολοκληρωτικής εξίσωσης των Gelfand-Levitan-Marchenko. Πέρα από την περιγραφή της μεθόδου ένδυσης στην αρχική της μορφή, βλέπουμε και πώς αυτή εμφανίζεται στη σύγχρονη βιβλιογραφία. Με την πάροδο του χρόνου εξελίχθηκε αρκετά και συνδέθηκε με προβλήματα της μιγαδικής ανάλυσης και, πιο συγκεκριμένα, με τα προβλήματα Riemann-Hilbert (RH) και dbar που, με τη σειρά τους, προκύπτουν σε πολλές εφαρμογές των μαθηματικών. Από ένα μεγάλο πλήθος πρόσφατα δημοσιευμένων άρθρων, παρουσιάζουμε αναλυτικότερα ένα, αυτό των Bogdanov και Zakharov (2002), που αφορά στην εξίσωση Boussinesq. Περιγράφουμε μια ειδικότερη μορφή της μεθόδου ένδυσης, η οποία ονομάζεται ένδυση dbar (dbar-dressing) και αναλύουμε, μέσω αυτής, τις σολιτονικές λύσεις και το συνεχές φάσμα της εξίσωσης Boussinesq. Οι σολιτονικές λύσεις της εξίσωσης παρουσιάζουν μία πολύ ιδιαίτερη συμπεριφορά, η οποία έρχεται σε αντίθεση με τον ευσταθή χαρακτήρα των σολιτονίων. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Δαούσης Δημήτριος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2012
Λέξεις Κλειδιά: Αναπτυξιακή έρευνα, Εξ αποστάσεως εκπαίδευση, Ελληνικό Ανοικτό Πανεπιστήμιο (ΕΑΠ) Σύνοψη: Το Moodle είναι ένα ελεύθερο σύστημα διαχείρισης και δημιουργίας δυναμικών, ευέλικτων και ευχάριστων online μαθημάτων. Περιγράφεται ως CMS (Course Management System) ή VLE (Virtual Learning Environment), ενώ η φιλοσοφία του στηρίζεται στη διαπίστωση ότι ο άνθρωπος κατακτά τη γνώση όταν αλληλεπιδρά με το περιβάλλον. Στην παρούσα έρευνα περιγράφεται μία μελέτη περίπτωσης για την οποία μελετώνται η σχεδίαση, η ανάπτυξη, η υλοποίηση και η αξιολόγηση ενός Δικτυακού Περιβάλλοντος Υποστήριξης της Θεματικής Ενότητας (ΘΕ) ΠΛΗ37 του ΕΑΠ, κατά το ακαδημαϊκό έτος 2010-2011. Το Δικτυακό Περιβάλλον της εν λόγω ΘΕ βασίστηκε στην πλατφόρμα Moodle και ο κύριος σκοπός της εργασίας είναι η μελέτη της σχεδίασης και ανάπτυξης καθώς και της εφαρμογής και αξιολόγησης ενός μαθήματος (ΘΕ ΠΛΗ37) σε προπτυχιακό επίπεδο με τη χρήση ενός υπολογιστικού περιβάλλοντος ασύγχρονης εξ αποστάσεως εκπαίδευσης (εξΑΕ), μέσω των αντιλήψεων, των στάσεων και των πρακτικών χρήσης των φοιτητών. Στα πλαίσια της έρευνας μελετήθηκε, επίσης, η συσχέτιση μεταξύ των πρακτικών χρήσης που ανέπτυξαν οι φοιτητές, και των επιδόσεων τους (τελική βαθμολογία) στην συγκεκριμένη ΘΕ. Για το σκοπό αυτό έγινε χρήση ερωτηματολογίου, πραγματοποιήθηκαν ατομικές συνεντεύξεις αλλά και αξιοποίηση των αρχείων καταγραφής που παρείχε το Moodle. Τα αποτελέσματα της έρευνας έδειξαν ότι υπήρξε άμεση συσχέτιση των πρακτικών χρήσης που ανέπτυξαν οι φοιτητές με τις επιδόσεις τους και ότι οι φοιτητές απέκτησαν θετική στάση αναφορικά με τη χρήση της πλατφόρμας Moodle. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τασουλής Σωτήρης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2009
Λέξεις Κλειδιά: Ομαδοποίηση, Διάσπαση ιδιάζουσων τιμών, Αναγνώριση προτύπων, Ανάλυση πρωτευουσών συνιστωσών Σύνοψη: Η ομαδοποίηση ομαδοποιεί τα δεδομένα βασισμένη μόνο σε πληροφορία που βρίσκεται σε αυτά η οποία περιγράφει τα αντικείμενα και τις σχέσεις τους. Ο στόχος είναι τα αντικείμενα που βρίσκονται σε μια ομάδα να είναι όμοια(ή σχετικά) μεταξύ τους και διαφορετικά απο τα αντικείμενα των άλλων ομάδων. Όσο μεγαλύτερη είναι η ομοιότητα(ή η ομοιογένεια) σε μια ομάδα και όσο μεγαλύτερη είναι η διαφορετικότητα ανάμεσα στις ομάδες τόσο καλύτερη είναι η ομαδοποίηση. Οι μεθόδοι ομαδοποίησης μπορούν να διακριθούν σε τρείς κατηγορίες, ιεραρχικές, διαχωριστικές, και στις βασισμένες στη πυκνότητα. Οι ιεραρχικοί αλγόριθμοι μας δίνουν ιεραρχίες ομάδων σε μία top-down(συγχωνευτική) ή bottom-up(διαχωριστική) μορφή. Η εργασία αυτή επικεντρώνεται στην ιεραρχική διαχωριστική ομαδοποίηση. Ανάμεσα στους ιεραρχικούς διαχωριστικούς αλγορίθμους ξεχωρίζουμε τον αλγόριθμο Principal Direction Divisive Partitioning (PDDP). Ο PDDP χρησιμοποιεί την προβολή των δεδομένων στα κύρια συστατικά της αντίστοιχης μήτρας συνδιασποράς. Αυτό επιτρέπει την εφαρμογή σε δεδομένα υψηλής διάστασης. Στην εργασία αυτή προτείνεται μια βελτίωση του αλγορίθμου \Principal Direction Divisive Partitioning. Ο προτεινόμενος αλγόριθμος συνδυάζει στοιχεία από την εκτίμηση πυκνότητας και τις μεθόδους βασισμένες στην προβολή με έναν γρήγορο και αποδοτικό αλγόριθμο, ικανό να αντιμετωπίσει δεδομένα υψηλής διάστασης. Τα πειραματικά αποτελέσματα δείχνουν βελτιωμένη απόδοση ομαδοποίησης σε σύγκριση με άλλες δημοφιλείς μεθόδους. Επίσης ερευνάται το πρόβλημα του αυτόματου καθορισμού του πλήθους των ομάδων που είναι πολύ σημαντικό την ανάλυση ομάδων. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κόκλα Αικατερίνη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Παιγνιοσκελετός, Άβαταρ, Πριμ Σύνοψη: Σκοπός της παρούσας διπλωματικής εργασίας είναι η παρουσίαση ενός σοβαρού εκπαιδευτικού ηλεκτρονικού παιχνιδιού και η αξιολόγηση από τη χρήση του από Έλληνες χρήστες και συγκεκριμένα από μια διαδικτυακή ελληνική κοινότητα του Second Life. Αυτή η εργασία ξεκινάει αναλύοντας θεωρίες για περιβάλλοντα μάθησης και μιας γενικότερης θεωρίας μάθησης στην έννοια των εν λόγω περιβάλλοντων μάθησης. Οι απαιτήσεις που παρουσιάζονται, συγκεντρώνονται σε μια ολοκληρωμένη λίστα για ένα εκπαιδευτικό περιβάλλον. Παρουσιάζονται εκπαιδευτικές θεωρίες, μοντέλα και μεθοδολογίες, μαζί με μερικούς πιθανούς τρόπους όπου το ηλεκτρονικό παιχνίδι θα μπορούσε να ενισχύσει την εφαρμογή τους. Αναφέρονται διαφορετικοί τρόποι μάθησης και οι απαιτήσεις από την έρευνα για τα μαθησιακά περιβάλλοντα. Στη συνέχεια αναλύεται η καταλληλότητα των ηλεκτρονικών παιχνιδιών ως εκπαιδευτικά εργαλεία με μεγαλύτερη αξιοπιστία σε συνδυασμό με τις απαιτήσεις για τα μαθησιακά περιβάλλοντα. Αναφέρονται οι κοινωνικές πτυχές των εν λόγω παιχνιδιών που λαμβάνουν περισσότερη προσοχή κατά την αξιολόγηση των εκπαιδευτικών τους προσόντων. Έπειτα, παρουσιάζεται το σοβαρό εκπαιδευτικό ηλεκτρονικό παιχνίδι Second Life, τα τεχνικά χαρακτηριστικά του, το περιβάλλον του, ο τρόπος λειτουργίας του καθώς και το μοντέλο μαθητή που εμφανίζεται μέσα στο παιχνίδι. Τέλος, παρουσιάζονται τα αποτελέσματα της έρευνας που έγιναν για Έλληνες χρήστες του Second Life, τα βασικά χαρακτηριστικά τους μέσα στον εικονικό κόσμο αλλά και πως ο εικονικός αυτός κόσμος αποτελεί ένα ιδιαίτερο χώρο ανάπτυξης κοινωνικών σχέσεων, ο οποίος εκφράζοντας μια δική του δυναμική, ως χώρος έκφρασης της ελεύθερης φαντασίας, στη συνέχεια επηρεάζει και έχει αποτελέσματα και στο φυσικό κόσμο και τις εκεί κοινωνικές σχέσεις και την εκπαίδευση. Αρχείο Διπλωματικής Εργασίας |
ΕπικοινωνίαΕργαστήριο Η/Υ & Εφαρμογών Πανεπιστημιούπολη, T.K. 265 00, Ρίο Πατρών Τηλ: +30 2610 997280 Φαξ: +30 2610 997424 lcsa@math.upatras.grΛοιποί Σύνδεσμοι Τμήματος
|
Ανάπτυξη & Συντήρηση Ιστοχώρου
Εργαστήριο Η/Υ & Εφαρμογών
Υπεύθ. Επικοινωνίας : Δ. Ανυφαντής (Ε.Τ.Ε.Π)
|