Διακεκριμένες Επιστημονικές Εργασίες Τμήματος Μαθηματικών
Εργασίες σε Επιστημονικά Συνέδρια
Εργασίες σε Επιστημονικά Περιοδικά
Διπλωματικές Εργασίες Μ.Δ.Ε - Διδακτορικές Διατριβές Τμήματος Μαθηματικών
Διπλωματικές Εργασίες Μ.Δ.Ε
Διδακτορικές Διατριβές
![]() ![]() ![]() Συγγραφέας: Ηλιοπούλου Μαρίνα
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Βιομαγνητικά ρευστά, Επίδραση μαγνητικόυ πεδίου, Βιομαγνητοϋδροδυναμική, Αριθμητικά σχήματα, Αλγόριθμος του Thomas, Μέθοδος ψευδομετάβασης, Μέθοδος line by line Σύνοψη: Η παρούσα εργασία εκπονήθηκε στο πλαίσιο Διπλωματικής διατριβής του Διατμηματικού Προγράμματος Μεταπτυχιακών Σπουδών «Μαθηματικά των Υπολογιστών και των Αποφάσεων» των Τμημάτων Μαθηματικού και Μηχανικών Η/Υ και Πληροφορικής του Πανεπιστημίου Πατρών. Το φυσικό πρόβλημα που μελετάμε είναι η Ροή Βιομαγνητικού Ρευστού σε Ανεύρυσμα υπό την επίδραση Μαγνητικού Πεδίου. Θεωρούμε το αίμα ως μαγνητικό ρευστό και υποθέτουμε πως συμπεριφέρεται ως ένα ηλεκτρικά αγώγιμο, ομογενές και μη ισόθερμο Νευτώνειο μαγνητικό ρευστό που παρουσιάζει παράλληλα ιδιότητες σιδηρομαγνητικού (ferrofluid) ή παραμαγνητικού υλικού. Οι βασικοί στόχοι της μελέτης είναι η παρουσίαση μίας μεθοδολογίας αριθμητικής επίλυσης και η μελέτη της επίδρασης του μαγνητικού πεδίου στην ροή του αίματος στην περιοχή του ανευρύσματος. Το φυσικό πρόβλημα που μελετάμε είναι αυτό που μελετήθηκε στην εργασία Ε. Ε. Tzirtzilakis, Biomagnetic Fluid Flow in an Aneurism Using FerroHydroDynamics Principles, Physics of Fluids, 27, 061902, 2015, με την επιπρόσθετη υιοθέτηση των αρχών της Μαγνητοϋδροδυναμικής λόγω της ηλεκτρικής αγωγιμότητας. Στο πρώτο κεφάλαιο, παραθέτουμε ορισμένες εισαγωγικές έννοιες γενικά περί μαγνητικών ρευστών. Ακόμα αναφερόμαστε στα Βιομαγνητικά Ρευστά και πιο συγκεκριμένα στο αίμα, την σύνδεσή του με τα μαγνητικά ρευστά, τις ροϊκές μαγνητικές ιδιότητες αυτού, καθώς επίσης και διάφορες σχετικές εφαρμογές στην Ιατρική. Στο δεύτερο κεφάλαιο, περιγράφουμε κάποια αριθμητικά εργαλεία τα οποία χρησιμοποιούμε κατά την επίλυση του προβλήματος. Αρχικά παρουσιάζουμε βασικά αριθμητικά σχήματα πεπερασμένων διαφορών με την βοήθεια των οποίων γίνεται η προσέγγιση μερικών παραγώγων. Επιπλέον αναφερόμαστε στα είδη των προβλημάτων όπως αυτά ταξινομούνται με βάση την μορφή διαφορικών εξισώσεων με μερικές παραγώγους που τα διέπουν καθώς και τις αντίστοιχες συνοριακές τους συνθήκες. Στην συνέχεια παρουσιάσουμε την μέθοδο διαδοχικών υπερχαλαρώσεων (Successive Over Relaxation - S.O.R.) η οποία είναι μια επαναληπτική μέθοδος που θα χρησιμοποιήσουμε για την επίλυση εξισώσεων του προβλήματος. Επιπροσθέτως παρουσιάζουμε τον αλγόριθμο του Thomas για την επίλυση αλγεβρικού συστήματος με τριδιαγώνιο πίνακα αγνώστων και μία επαναληπτική, μερικώς μη εκπεφρασμένη μεθοδολογία επίλυσης εξισώσεων με μερικές παραγώγους (line by line implicit method). Στο τρίτο κεφάλαιο παραθέτουμε την μαθηματική μοντελοποίηση του φυσικού προβλήματος που περιγράφεται από ένα συζευγμένο μη γραμμικό σύστημα διαφορικών εξισώσεων με μερικές παραγώγους που υπόκεινται σε κατάλληλες συνοριακές συνθήκες. Οι εξισώσεις αυτές μετασχηματίζονται με την εισαγωγή της ρευματική συνάρτησης και του στροβιλισμού. Στη συνέχεια εκτελούμε διάφορους μετασχηματισμούς του φυσικού χωρίου και του υπολογιστικού πλέγματος, κατασκευάζουμε τις συνοριακές συνθήκες και παρουσιάζουμε τον αλγόριθμο της αριθμητικής επίλυσης του προβλήματος. Τέλος, στο τέταρτο κεφάλαιο παραθέτουμε αποτελέσματα για διάφορες τιμές των παραμέτρων που σχετίζονται με το φυσικό πρόβλημα. Εκτελούμε συγκρίσεις μεταξύ ροής του ρευστού υπό την επίδραση μαγνητικού πεδίου σε σύγκριση με την απλή υδροδυναμική περίπτωση, δηλαδή της ροής του ρευστού χωρίς την παρουσία μαγνητικού πεδίου. Η επίδραση του μαγνητικού πεδίου στην ροή είναι σημαντική τόσο για το πεδίο ταχυτήτων όσο και για το πεδίο θερμοκρασίας. Παρουσιάζουμε επίσης την σημαντική επίδραση του συντελεστή τριβής και μεταφοράς θερμότητας στα τοιχώματα. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κάρλος Σταμάτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Γεννήτριες τυχαίων αριθμών, Ψευδοτυχαίοι αριθμοί, Τυχαίοι αριθμοί, Τυχαιότητα, Ανακάτεμα, Προσομοίωση Σύνοψη: Σκοπός της συγκεκριμένης πτυχιακής εργασίας αποτελεί η μελέτη, η ανάλυση, η διερεύνηση και η κατηγοριοποίηση των σημαντικότερων μεθόδων παραγωγής τυχαίων αριθμών. Σε πρώτο στάδιο, παρουσιάσθηκε μία ιστορική αναδρομή σχετικά με τους τυχαίους αριθμούς και αναφέρθηκαν οι σημαντικότερες εφαρμογές που αυτοί βρίσκουν εφαρμογή. Στη συνέχεια, προσδιορίστηκαν οι ιδιότητες που πρέπει να πληρούνται στις γραμμικές συμπτωτικές γεννήτριες καθώς και τα κυριότερα χαρακτηριστικά των υπόλοιπων γεννητριών. Εν συνεχεία, παρουσιάσθηκαν οι πιο γνωστές σουίτες στατιστικών τεστ που αξιοποιούνται πλέον από το σύνολο των σύγχρονων εταιριών, οι οποίες απαιτούν κάποιο επίπεδο τυχαιότητας στις εφαρμογές τους. Επιπλέον, στην εργασία συμπεριλήφθηκαν οι υλοποιήσεις που έγιναν στα υπολογιστικά περιβάλλοντα των Python, R και Matlab, προκειμένου να εξομοιωθεί η συμπεριφορά διαφόρων γεννητριών τυχαίων αριθμών και να εξετασθεί η συμπεριφορά τους με τα εκάστοτε στατιστικά κριτήρια. Τέλος, αναλύεται εις βάθος η υλοποίηση του τυχερού παιχνιδιού Draw Poker, με σκοπό την εξομοίωση του τρόπου λειτουργίας της με τη χρήση ψευδοτυχαίων αριθμών και την εξακρίβωση της ορθότητας και του επιπέδου εμπιστοσύνης σε μία τέτοιου είδους ντετερμινιστική εφαρμογή. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαδοπούλου Αργυρώ
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ηλεκτρονικές δεξιότητες, Εξ αποστάσεως εκπαίδευση Σύνοψη: Οι ραγδαίες τεχνολογικές εξελίξεις των τελευταίων ετών και μια σειρά επιπλέον λόγων όπως η οικονομική κρίση, η παγκοσμιοποίηση και οι υψηλοί δείκτες ανεργίας επηρέασαν τις δομές και τις απαιτήσεις στην αγορά εργασίας. Γενικότερα, παρατηρήθηκε στροφή των αγορών σε θέσεις εργασίας που χαρακτηρίζονται από μεγαλύτερη ένταση ικανοτήτων και δημιουργία πολλών θέσεων εργασίας στον τομέα των υπηρεσιών και της τεχνολογίας. Στην ταχύτητα αλλαγής του σκηνικού στον τομέα της απασχόλησης φάνηκε να μην μπορεί να ανταποκριθεί επαρκώς το εκπαιδευτικό σύστημα. Η προσαρμογή των διαδικασιών και των φιλοσοφιών των εκπαιδευτικών συστημάτων στις νέες απαιτήσεις της αγοράς εργασίας ήταν αργή δημιουργώντας τεράστια κενά στην προσφορά συγκεκριμένων προσόντων και δεξιοτήτων, κυρίως στον τομέα ΤΠΕ. Σε ευρωπαϊκό επίπεδο το παραπάνω πρόβλημα άρχισε να γίνεται αντιληπτό στις αρχές της χιλιετίας και έχοντας ως απώτερο σκοπό τη δημιουργία μιας ενιαίας Ευρωπαϊκής αγοράς ξεκίνησε μια σειρά δράσεων. Οι δράσεις αυτές στοχεύουν στην ανάπτυξη ικανοτήτων προσαρμοσμένων στις νέες απαιτήσεις της αγοράς εργασίας καταργώντας τα εθνικά σύνορα. Περιλαμβάνουν δημιουργία ευρωπαϊκών και εθνικών πλαισίων προσόντων, (συνδεδεμένων μεταξύ τους), προγράμματα συνεχούς επιμόρφωσης και κατάρτισης, προσανατολισμό των εκπαιδευτικών συστημάτων στα μαθησιακά αποτελέσματα και σεμινάρια απόκτησης ηλεκτρονικών ικανοτήτων. Οι νέες αυτές απαιτήσεις σε συνδυασμό με την εξέλιξη της τεχνολογίας είχαν ως επακόλουθο τη δημιουργία νέων μέσων και μεθόδων διδασκαλίας οι οποίες φαίνεται να καλύπτουν τις αδυναμίες των συμβατικών μορφών. Η ενίσχυση της εξ –αποστάσεως εκπαίδευσης και η αύξηση του αγοραστικού της κοινού ανάγκασαν του εκπαιδευτικούς φορείς να προσαρμοστούν στα νέα δεδομένα. Έτσι έχοντας ως βασική υποδομή τις πλατφόρμες ηλεκτρονικής μάθησης και τις υπηρεσίες του Web 2.0 η εξ-αποστάσεως εκπαίδευση έχει καθιερωθεί όχι μόνο στους εκπαιδευτικούς φορείς αλλά και στα επιχειρηματικά προγράμματα κατάρτισης εργαζομένων . Σκοπός της πτυχιακής αυτής εργασίας είναι ο σχεδιασμός και η δημιουργία ενός διαδικτυακού μαθήματος, στην πλατφόρμα ηλεκτρονικής μάθησης Moodle, με στόχο την ανάπτυξη ικανοτήτων για το επάγγελμα του “Προγραμματιστή Διαδραστικής Πολιτιστικής Εμπειρίας” όπως αυτές εμφανίζονται στο ευρωπαϊκό πλαίσιο προσόντων e-cf. Βασικός προσανατολισμός της πτυχιακής εργασίας είναι να εκμεταλλευτεί τα εργαλεία τεχνολογίας που προσφέρονται προκειμένου να δημιουργηθεί ένα ηλεκτρονικό μάθημα βασισμένο στα μαθησιακά αποτελέσματα και να συνδέσει μέσω της χρήσης του πλαισίου προσόντων την αγορά εργασίας με την εκπαίδευση. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Σαλτού Ελένη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Οπτικοποίηση, Αναπαραστάσεις μαθηματικών εννοιών, Ρητοί αριθμοί, Άρρητοι αριθμοί, Ομοιότητα πολυγώνων, Διδακτικό πείραμα Σύνοψη: Η διδακτική των μαθηματικών μελετά το πώς μαθαίνουν τα παιδιά τις μαθηματικές έννοιες και διαδικασίες, ποιές και γιατί δυσκολεύονται να κατανοήσουν, και με ποιο τρόπο μπορούν να υπερβούν τα όποια γνωστικά εμπόδια προκύπτουν, για να τις κατανοήσουν. Σκοπός της εργασίας αποτελεί η μελέτη για το πώς συμβάλλει η γεωμετρική αναπαράσταση αυτών των εννοιών και διαδικασιών τόσο στη διδασκαλία τους, όσο και στην κατανόησή τους. Στην παρούσα διπλωματική εργασία παρουσιάζεται ακριβώς μια τέτοια διαδρομή, μια διδακτική, μερικά καθοδηγούμενη επαγωγή: από μια ευκολότερα κατανοήσιμη έννοια (την ομοιότητα σχημάτων) σε μια αρκετά πιο αφηρημένη και δύσληπτη έννοια, για τις πρώτες τάξεις του Γυμνασίου, αυτή του άρρητου αριθμού. Η διπλωματική εργασία αποτελείται από δύο κύρια μέρη. Στο πρώτο μέρος γίνεται επισκόπηση της σχετικής βιβλιογραφίας, με ανάλυση των σημαντικότερων αποτελεσμάτων ερευνητικών εργασιών που ασχολούνται με τις γεωμετρικές αναπαραστάσεις στη διδασκαλία των αρρήτων, και αναφορά σε εργασίες από το χώρο της εκπαιδευτικής και γνωστικής ψυχολογίας, καίριας σημασίας για την κριτική ανάλυση της προς μελέτη έννοιας. Παράλληλα, περιγράφεται το διδακτικό μοντέλο της καθοδηγούμενης ανακάλυψης. Στο δεύτερο μέρος, αρχικά, γίνεται παρουσίαση της μεθοδολογίας της έρευνας, της σχολικής τάξης όπου έγινε το διδακτικό πείραμα και της μεθόδου συλλογής των δεδομένων. Στη συνέχεια, γίνεται ανάλυση των αποτελεσμάτων της πραγματοποιηθείσας έρευνας, με έμφαση στην ανάλυση των διαλόγων, τη διαδικασία σκέψης των μαθητών, στα προβλήματα που ανακύπτουν και τους δυνητικούς τρόπους επίλυσής τους. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Καραμέρος Παναγιώτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Αξία σε κίνδυνο, Αναμενόμενο έλλειμα Σύνοψη: Η ποσοτικοποίηση του κινδύνου της αγοράς μέσω της Αξίας σε Κίνδυνο (Value at Risk), αποτελεί ένα χρήσιμο εργαλείο ελέγχου για ένα χρηματοοικονομικό οργανισμό προκειμένου να διασφαλίζεται η επάρκεια ρευστότητας και η ασφάλεια των επενδύσεων. Ωστόσο, η μαθηματική μοντελοποίηση του κινδύνου για ένα χαρτοφυλάκιο αποτελεί ένα δύσκολο εγχείρημα. Στη παρούσα διπλωματική εργασία εξετάζονται τεχνικές εκτίμησης της Αξίας σε Κίνδυνο, που αποτελεί ένα σημαντικό μέτρο κινδύνου και βασίζεται στην κατανομή των αποδόσεων ενός χαρτοφυλακίου. Αρχικά, παρουσιάζονται οι κατηγορίες οικονομικού κινδύνου και ο ρόλος που παίζουν τα μέτρα κινδύνου. Εισάγονται οι έννοιες της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος (Expected Shortfall) και μελετώνται πιθανοί τρόποι εκτίμησης τους. Η μελέτη επικεντρώνεται σε δύο κατανομές από τη θεωρία ακραίων τιμών, τη Γενικευμένη Κατανομή Ακραίων Τιμών και τη Γενικευμένη Pareto. Για την εκτίμηση των παραμέτρων των κατανομών αυτών επιλέγονται δεδομένα σύμφωνα με δύο τεχνικές. Αυτές είναι η μέθοδος Μεγίστων ανά Περίοδο (Block Maxima) και η μέθοδος Κορυφών πάνω από Κατώφλι (Peaks Over Threshold), οι οποίες παρουσιάζονται αναλυτικά. Η εκτίμηση των παραμέτρων μπορεί να γίνει με τη κλασσική μέθοδο της μέγιστης πιθανοφάνειας, όμως εδώ χρησιμοποιούνται εναλλακτικά και μέθοδοι Monte Carlo και Markov Chain Monte Carlo, όταν το πρόβλημα αντιμετωπίστηκε με μία Μπεϋζιανή οπτική. Πιο συγκεκριμένα, χρησιμοποιήθηκε η μέθοδος της δειγματοληψίας σπουδαιότητας (Importance Sampling) και ο υβριδικός δειγματολήπτης Gibbs, δηλαδή ένας δειγματολήπτης Gibbs στον οποίο τουλάχιστον μια προσομοίωση από την πλήρη δεσμευμένη κατανομή έχει αντικατασταθεί από ένα βήμα Metropolis, καθώς δεν μπορεί να γίνει απευθείας προσομοίωση από αυτή λόγω της πολύπλοκης μορφής της. Τέλος, χρησιμοποιήθηκε και η μη παραμετρική μέθοδος Hill, ως εναλλακτική των εκτιμήσεων που γίνονται με βάση τη Γενικευμένη Pareto. Για την πειραματική μελέτη των τεχνικών εκτίμησης της Αξίας σε Κίνδυνο και του Αναμενόμενου Ελλείμματος που αναφέρθηκαν προηγουμένως, χρησιμοποιήθηκαν πραγματικά δεδομένα κίνησης τεσσάρων χρηματιστηριακών δεικτών και τεσσάρων χρηματιστηριακών προϊόντων (μετοχών). Τέλος, για την εφαρμογή αξιοποιήθηκαν πακέτα διαθέσιμα στη στατιστική γλώσσα προγραμματισμού R ενώ συμπληρωματικά δημιουργήθηκε κώδικας R όπου αυτό απαιτήθηκε. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Αστεριώτη Φωτεινή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Υπογραφή συστήματος, Συνεχόμενο k-από-τα-n σύστημα, Συνάρτηση αξιοπιστίας Σύνοψη: Στην παρούσα εργασία παρουσιάζεται μία μελέτη ενός σημαντικού εργαλείου για την επίλυση μίας σειράς προβλημάτων στην αξιοπιστία συστημάτων, το οποίο ονομάζεται υπογραφή συστήματος (system signature). Πιο συγκεκριμένα, στο πρώτο κεφάλαιο της εργασίας δίνονται εισαγωγικές έννοιες της Θεωρίας Αξιοπιστίας. Εισάγεται η έννοια του μονότονου συστήματος και χρησιμοποιείται η συνάρτηση δομής και οι ιδιότητές της, ως μέσο για την μελέτη της απόδοσης ενός συστήματος και την σύγκρισή του με ένα άλλο σύστημα. Στη συνέχεια, δίνονται οι σχέσεις υπολογισμού της συνάρτησης δομής με τη βοήθεια των ελαχίστων συνόλων διαδρομής (minimal path sets) και αποκοπής (minimal cut sets). Παρουσιάζεται επίσης, η αξιοπιστία ενός συστήματος μέσω της συνάρτησης δομής του, και δίνεται η έννοια του δυϊκού ενός συστήματος. Στο δεύτερο κεφάλαιο εισάγεται η έννοια της υπογραφής ενός μονότονου συστήματος αξιοπιστίας, η οποία ορίζεται με τη βοήθεια των διατεταγμένων χρόνων ζωής των συνιστωσών του. Στη συνέχεια, παρουσιάζονται οι υπογραφές γνωστών συστημάτων και ο τρόπος υπολογισμού τους. Δίνονται ακριβείς τύποι για τον υπολογισμό της συνάρτησης επιβίωσης, καθώς και άλλων χαρακτηριστικών ενός συστήματος, όπως είναι ο ρυθμός αποτυχίας. Επίσης, εισάγονται οι έννοιες της minimal και maximal υπογραφής ενός μονότονου συστήματος. Διατυπώνονται τρεις διαφορετικοί τρόποι σύγκρισης της απόδοσης μονότονων συστημάτων, τα αποτελέσματα των οποίων στηρίζονται στη διάταξη των διανυσμάτων των υπογραφών τους. Επιπλέον, χρησιμοποιείται η έννοια της υπογραφής για να μελετηθεί ένα παράδειγμα στοχαστικής σύγκρισης συστημάτων που βασίζονται στην αρχή του πλεονασμού. Το τρίτο κεφάλαιο επικεντρώνεται στην υπογραφή των συνεχόμενων k-από-τα-n συστημάτων αποτυχίας. Αρχικά, παρουσιάζονται αναδρομικές σχέσεις που έχουν δοθεί για τον υπολογισμό της υπογραφής των συστημάτων αυτών, καθώς και εκφράσεις μέσω συνδυαστικής ανάλυσης. Δίνονται, επίσης, σχέσεις για την αξιοπιστία των συνεχόμενων συστημάτων, ως μίξη των αξιοπιστιών των διατεταγμένων χρόνων ζωής των συνιστωσών τους μέσω της υπογραφής του συστήματος. Τέλος, παρουσιάζονται συνθήκες διατήρησης της ιδιότητας γήρανσης IFR των συνεχόμενων k-από-τα-n συστημάτων αποτυχίας και συγκρίσεις των χρόνων ζωής διαφόρων συνεχόμενων συστημάτων αξιοπιστίας. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Σουρμελίδης Αθανάσιος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Υπερκυκλικοί τελεστές, Γραμμικό χάος Σύνοψη: Είναι ευρέως διαδεδομένο ότι η έννοια του χάους συνδέεται με τη μη γραμμικότητα. Αυτό οφείλεται στο γεγονός ότι διαισθητικά περιμένουμε από μία γραμμική απεικόνιση να παρουσιάζει μία ̔ ̔ προβλέψιμη ̓ ̓ συμπεριφορά. Κάτι το οποίο όμως δεν αληθεύει. Πρώτος ο G.D. Birkhoff (1929) βρήκε ένα παράδειγμα ενός τελεστή με ένα σημαντικό στοιχείο του χάους: ο τελεστής είχε πυκνή τροχιά. Στη συνέχεια ακολούθησαν οι G.R. Maclane (1952) και S. Rolewisz (1969), οι οποιοί βρήκαν επιπλέον παραδείγματα τελεστών με πυκνή τροχιά. Παρακινούμενοι από αυτά τα παραδείγματα, πολλοί ερευνητές άρχισαν να μελετούν την έννοια του χάους υπό το πρίσμα της γραμμικότητας, ονομάζοντας τους τελεστές με πυκνή τροχιά υπερκυκλικούς. Το καθοριστικό βήμα έγινε από τους G. Godefroy και J.H. Shapiro (1991), οι οποίοι όχι μόνο ανακάλυψαν καινούργιες κλάσεις υπερκυκλικών τελεστών, αλλά πρότειναν επίσης να γίνει αποδεκτός ο ορισμός του (μη γραμμικου) χάους, που είχε δοθει από τον Devaney, ως ο ορισμός του γραμμικού χάους: ́Ενας τελεστής είναι χαοτικός αν: 1) έχει πυκνή τροχιά, 2) έχει ευαίσθητη εξάρτηση στις αρχικές συνθήκες, 3) το σύνολο των περιοδικών του σημείων είναι πυκνό. Σκοπός αυτής της εργασίας, η οποία βασίζεται στο βιβλίο Linear Chaos των Karl-G. Grosse- Erdmann και A.Peris Manguillot, είναι να γίνει μία εισαγωγή στη θεωρία των υπερκυκλικών τελεστών και ταυτόχρονα να παρουσιαστούν ορισμένα από τα πιο θεμελιώδη θεωρήματα της θεωρίας αυτής. Στο 1ο κεφάλαιο γίνεται μία εισαγωγή στη θεωρία των δυναμικών συστημάτων (όχι απαραίτητα γραμμικών) και παρουσιάζονται ορισμένα αποτελέσματα με βασικότερο αυτών, το θεώρημα του Birkhoff που δίνει μία συνθήκη ώστε μία απεικόνιση να έχει πυκνή τροχιά. Στο 2ο κεφάλαιο γίνεται η κατασκευή των χώρων Fr ́echet, που είναι μία γενίκευση των χώρων Banach και στη συνέχεια μεταφέρουμε τα αποτελέσματα του 1ου κεφαλαίου πάνω σε γραμμικά δυναμικά συστήματα. Στο 3ο κεφάλαιο παρουσιάζονται ορισμένα κριτήρια που αν ικανοποιεί ένας τελεστής, θα είναι υπερκυκλικός ή ακόμα και χαοτικός, με τελικό το κριτήριο Υπερκυκλικότητας. Στο 4ο κεφάλαιο παρουσιάζονται δύο από τα σπουδαιότερα θεωρήματα της θεωρίας των υπερκυκλικών τελεστών: 1)το θεώρημα της Ansari, 2)το θεώρημα των Bourdon-Feldmann. Στο 5ο κεφάλαιο παρουσιάζεται μία από τις πιο πρόσφατες έννοιες στη θεωρία των υπερκυκλικών τελεστών και που έχει γεννηθεί από την εργοδική θεωρία: αυτή της συχνής υπερκυκλικότητας. Τέλος, στο 6ο κεφάλαιο μελετάται η ύπαρξη κοινών υπερκυκλικών διανυσμάτων μίας υπερα- ριθμήσιμης οικογένειας τελεστών. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Ντοκομέ Αγλαΐα-Παρασκευή
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ποιότητα, Συστήματα διασφάλισης ποιότητας, Εργασία Σύνοψη: Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η ανάλυση και η διερεύνηση παραγόντων, οι οποίοι διαμορφώνουν το περιβάλλον εργασίας με την εγκατάσταση συστημάτων διασφάλισης ποιότητας. Για την άντληση πληροφοριών και την εξαγωγή συμπερασμάτων έγιναν δομημένες συνεντεύξεις σε εργαζόμενους συγκεκριμένων επιχειρήσεων με συστήματα διασφάλισης ποιότητας. Στην αρχή της εργασίας γίνεται εισαγωγή σε σημαντικές έννοιες όπως η ποιότητα, τα συστήματα διασφάλισης ποιότητας καθώς τα πρότυπα. Στη συνέχεια, αναφέρεται η έννοια του προτύπου και οι αντίστοιχες απαιτήσεις. Περιγράφεται αναλυτικά η διαδικασία πιστοποίησης επιχειρήσεων και παρατίθονται τα οφέλη που προκύπτουν από αυτή. Στα τελευταία κεφάλαια της εργασίας παρουσιάζεται η επεξεργασία των δεδομένων, η ανάλυση των αποτελεσμάτων καθώς και η εξαγωγή των συμπερασμάτων της έρευνας. Εν συνεχεία πραγματοποιείται σχολιασμός σε σχέση με τα δεδομένα της βιβλιογραφικής έρευνας που έγινε στα προηγούμενα κεφάλαια . Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τσιφτιλή Μαρία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ποιότητα, Συστήματα διασφάλισης ποιότητας Σύνοψη: Σκοπός αυτής της διπλωματικής εργασίας είναι η όσο το δυνατόν καλύτερη προσέγγιση της έννοιας της Ποιότητας και των Συστημάτων Διαχείρισης Ποιότητας, έννοιες πολύ βασικές αναφορικά με την εργασιακή οργάνωση και συμπεριφορά. Η εργασία δομείται σε τέσσερα κύρια κεφάλαια καθένα από τα οποία πραγματεύεται ένα διαφορετικό θέμα. Πιο συγκεκριμένα, αρχικά παρατίθενται λεπτομέρειες για τις βασικές αρχές της σειράς ISO 9000 καθώς και για τα πρότυπα που αυτή περιλαμβάνει, στη συνέχεια αναλύεται το πρότυπο Διαχείρισης Ποιότητας ISO 9001, οι βασικές αρχές του και οι απαιτήσεις του, όπως και ο τρόπος με τον οποίo μια επιχείρηση μπορεί να εφαρμόσει ένα ευέλικτο Σύστημα Διαχείρισης Ποιότητας με σκοπό την ικανοποίηση του πελάτη και τη συνεχή βελτίωση. Τέλος γίνεται επεξεργασία των δεδομένων, τα οποία συλλέχθηκαν με τη βοήθεια ερωτηματολογίου και αναλύθηκαν με τη χρήση του στατιστικού πακέτου SPSS 20.00. Η εργασία ολοκληρώνεται με την εξαγωγή των συμπερασμάτων και την παράθεση της βιβλιογραφίας από όπου αντλήθηκαν οι κυρίαρχες πηγές για τη συγγραφή του παρόντος πονήματος. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Αντωνέλου Γεωργία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Εξόρυξη δεδομένων, Σύστημα διαχείρισης μάθησης, Κατηγοριοποίηση, Παλινδρόμηση, Πρόβλεψη Σύνοψη: Τα τελευταία χρόνια πολλά Εκπαιδευτικά Ιδρύματα έχουν υιοθετήσει Διαδικτυακές Πλατφόρμες Μάθησης, όπως Συστήματα Διαχείρισης Μάθησης (Learning Management Systems) και άλλες Διαδικτυακές Εφαρμογές. Η δυνατότητα της λεπτομερούς καταγραφής και αποθήκευσης μεγάλου όγκου δεδομένων (Big Data), καθιστά αυτά τα Συστήματα μια δεξαμενή «κρυμμένης» γνώσης η οποία μπορεί να αποκαλυφθεί με διάφορους μηχανισμούς εξόρυξης (Εξόρυξη Γνώσης από Εκπαιδευτικά Δεδομένα- Educational Data Mining & Learning Analytics). Η ερμηνείας της γνώσης αυτής, δύναται να συνεισφέρει στη λήψη αποφάσεων σε πολλά επίπεδα και κυρίως στη βελτίωση των εκπαιδευτικών και μαθησιακών διαδικασιών που συνδέονται άμεσα με την Εκπαίδευση. Σκοπός της παρούσας διπλωματικής εργασίας είναι η εξόρυξη και αξιοποίηση των δεδομένων και των πληροφοριών που προέρχονται από τη Διαδικτυακή Πλατφόρμα του Ελληνικού Ανοικτού Πανεπιστημίου- ενός εκπροσώπου της εξ Αποστάσεως Εκπαίδευσης- εφαρμόζοντας κατάλληλες μεθόδους και τεχνικές Εξόρυξης Γνώσης σε Εκπαιδευτικά Δεδομένα (EDM). Συγκεκριμένα, παρουσιάζεται μια μελέτη (Case Study) Εξόρυξης Δεδομένων από την Διαδικτυακή Πλατφόρμα Moodle του ΕΑΠ, στο πλαίσιο της Θεματική Ενότητας ΠΛΗ37 «Πληροφορική και Εκπαίδευση» κατά τη διάρκεια ενός ακαδημαϊκού έτους. Πρόκειται για ένα πρόβλημα πρόβλεψης μαθησιακών αποτελεσμάτων (Predicting the Course Outcomes) με τη βοήθεια ενός προβλεπτικού μοντέλου της επίδοσης τελικής εξέτασης στο πλαίσιο της ΘΕ ΠΛΗ37. Η εύρεση του κατάλληλου προβλεπτικού μοντέλου (ή αλλιώς «Κατηγοριοποιητή» - classifier) πραγματοποιήθηκε με τη χρήση κατάλληλης προσέγγισης της μεθόδου Κατηγοριοποίησης (Classification) και διεξήλθε με τη βοήθεια λογισμικών εφαρμογής Αλγορίθμων Εξόρυξης Δεδομένων (Weka, R Programming). Οι ερευνητικές προεκτάσεις της παρούσας έρευνας, όπως προκύπτει και από σχετική βιβλιογραφική ανασκόπηση, είναι η συνδρομή/συνεισφορά κατάλληλων προβλεπτικών μεθόδων (στην τρέχουσα περίπτωση της Κατηγοριοποίησης (Classification) και Παλινδρόμησης (Regression)) για την αντιμετώπιση φαινομένων μη-επιτυχούς επίδοσης των φοιτητών σε μια ΘΕ καθώς και φαινομένων εγκατάλειψης (dropouts) μιας ΘΕ. Επομένως, η αξιοποίηση έγκαιρων και αξιόπιστων πληροφοριών (όπως η πρόβλεψη ακαδημαϊκής επιτυχίας-επίδοσης φοιτητή κ.ά) συντελεί καταλυτικά στη λήψη αποφάσεων και κατ’ επέκταση στην πολύ-επίπεδη βελτίωση (εκπαιδευτικό, μαθησιακό, οργανωτικό, διοικητικό) των Εκπαιδευτικών Δομών. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαμιχαήλ Αναστασία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Παίγνια, Στρατηγική, Ισορροπία Nash, Παίχτες, Δημοπρασίες Σύνοψη: Η παρούσα διπλωματική εργασία πραγματεύεται τη Θεωρία Παιγνίων που αποτελεί ένα από τα πιο σημαντικά εργαλεία της Επιχειρησιακής Έρευνας και επιλύει περιπτώσεις πολλών ληπτών αποφάσεων σε περιβάλλον ανταγωνιστικών συμπεριφορών. Η Θεωρία Παιγνίων προέρχεται από τον κλάδο των εφαρμοσμένων μαθηματικών και εφαρμόζεται σε ολοένα και περισσότερους τομείς της επιστήμης και της ζωής, με κυρίαρχο τον τομέα της Οικονομίας. Στο 1ο κεφάλαιο αναφέρονται η ιστορική αναδρομή και οι βασικές αρχές της Επιχειρησιακής Έρευνας. Στο 2ο κεφάλαιο εισαγόμαστε στη Θεωρία Παιγνίων, περιγράφουμε τις ποικίλες εφαρμογές της σε όλους τους τομείς της ζωής και αναλύουμε τις βασικές έννοιες της και τους τρόπους αναπαράστασης. Στο 3ο κεφάλαιο περιγράφονται τα βασικά παίγνια δύο παικτών μηδενικού αθροίσματος καθώς και ο τρόπος επίλυσής τους είτε μέσω αμιγών είτε μεσω μικτών στρατηγικών. Συνεχίζοντας, στο 4ο κεφάλαιο ορίζουμε τα στρατηγικά παίγνια, την κυριαρχία των στρατηγικών, όπως επίσης και τα κλασικά παίγνια μη μηδενικού αθροίσματος, συμπεριλαμβανομένου του γνωστού «Prisoner’s Dilemma» και των εφαρμογών του. Στο 5ο κεφάλαιο περιγράφουμε την ισορροπία Nash για παίγνια με αμιγείς και μικτές στρατηγικές και αναλύουμε τη διαδικασία εύρεσης της βέλτιστης λύσης στρατηγικού παιγνίου με την παράθεση κατάλληλων παραδειγμάτων και με τη χρήση του λογισμικού Gambit. Έπειτα, μέσω του 6ου κεφαλαίου μαθαίνουμε για τα εκτεταμένα παίγνια με τέλεια πληροφόρηση, τις λύσεις τους καθώς και τον τρόπο εύρεσης της ισορροπίας Nash. Τα συμμαχικά παίγνια, που είναι ένα ακόμα είδος παιγνίων, αναλύονται στο 7ο κεφάλαιο και κατανοούνται από την εφαρμογή τους στα αντίστοιχα παραδείγματα. Τέλος στο 8ο κεφάλαιο μαθαίνουμε σχετικά με μία σπουδαία και πολύ χρήσιμη στις μέρες μας εφαρμογή της Θεωρίας Παιγνίων που είναι οι δημοπρασίες. Εκεί καταγράφονται τα βασικά μεγέθη των δημοπρασιών, περιγράφονται τα πολλά είδη τους, ενός ή πολλών αντικειμένων, ορίζονται οι Μπεϋζιανές δημοπρασίες όπως επίσης και οι γνωστές σε όλους μας ηλεκτρονικές δημοπρασίες που χρησιμοποιούνται ευρέως στο διαδίκτυο. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Κοκκινάκης Δημήτρης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Ωρίμανση Ostwald, Συστήματα μη γραμμικών ΣΔΕ, Aνάλυση ευστάθειας Σύνοψη: Η ωρίμανση κατά Ostwald είναι η διεργασία μέσω της οποίας ένα σύνολο κρυστάλλων δαφόρων μεγεθών, μέσα σε ένα διάλυμα, καταλήγει στην κατάσταση όπου υπάρχουν πλέον μόνο κρύσταλλοι ενός συγκεκριμένου μεγέθους. Οι κρύσταλλοι μικρότερου μεγέθους διαλύονται, αυξάνοντας έτσι τη συγκέντρωση του διαλύματος, ενώ οι μεγαλύτεροι κρύσταλλοι με τη σειρά τους αντλούν υλικό από το διάλυμα και κατά συνέπεια διευρύνουν το μέγεθός τους. Αυτή η ανταλλαγή υλικού έχει ως αποτέλεσμα την επικράτηση των αρχικά μεγαλύτερων κρυστάλλων. Το τελικό τους μέγεθος καθορίζεται με τέτοιο τρόπο, ώστε να είναι σε πλήρη ισορροπία με την τελική συγκέντρωση του διαλύματος. Στην παρούσα διπλωματική εργασία εισάγουμε το μαθηματικό μοντέλο της παραπάνω διεργασίας, το οποίο περιγράφεται από ένα σύστημα Ν συζευγμένων μη-γραμμικών συνήθων διαφορικών εξισώσεων (με Ν το πλήθος των διαφορετικών μεγεθών μέσα στο διάλυμα). Επιλύοντας το παραπάνω μοντέλο παρακολουθούμε τη χρονική εξέλιξη του συστήματος. Επικεντρώνουμε την προσοχή μας στις διαδοχικές στιγμές μηδενισμού των μικρότερων κρυστάλλων, καθώς επίσης στα χαρακτηριστικά της τελικής κατάστασης ισορροπίας για t → ∞. Τέλος, παρουσιάζουμε τη σύνδεση του συστήματός μας με διάφορες άλλες εφαρμογές της ωρίμανσης Ostwald, όπως η εξάπλωση και εξέλιξη μιας επιδημικής νόσου καθώς και μια παραλλαγή της διεργασίας έτσι ώστε η τελική κατάσταση ισορροπίας να παρουσιάζει ταλαντωτική συμπεριφορά. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παλαιολόγος Δημοσθένης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Πιθανότητες, Συναρτήσεις, Μαθηματικά λυκείου Σύνοψη: Ο σκοπός που γράφτηκε η παρούσα διπλωματική είναι: α) Να γίνει μια σύντομη αναδρομή στην ιστορία του διδακτικού βιβλίου στο Ελληνικό Εκπαιδευτικό σύστημα. Να δούμε πως το σχολικό βιβλίο βοήθησε να ανθίσει η τυπογραφία στο νεοσύστατο Ελληνικό κράτος. Θα αναφερθούμε επιγραμματικά στις γενικές επιστημονικές, παιδαγωγικές, και διδακτικές αρχές, που πρέπει να πληροί το σχολικό βιβλίο των Μαθηματικών σύμφωνα με το Ινστιτούτο Εκπαιδευτικής Πολιτικής. Θα αναφέρουμε τον τρόπο που γίνεται ο ορισμός της συγγραφικής ομάδος καθώς και την διαδικασία έκδοσης και διανομής των σχολικών βιβλίων. β) Να δούμε ποιός είναι ο γενικός σκοπός διδασκαλίας των Μαθηματικών στο Γυμνάσιο και στο Λύκειο όπως αυτός καθορίζεται μέσα από τα Προγράμματα Σπουδών. Να αναφέρουμε το νομοθετικό πλαίσιο που οριοθετεί την διδασκαλία των Μαθηματικών στις διάφορες βαθμίδες της Δευτεροβάθμιας εκπαίδευσης. Να εξετάσουμε αν οι ώρες που διδάσκονται τα Μαθηματικά σύμφωνα με το ωρολόγιο πρόγραμμα είναι αρκετές για να προσφερθεί η προβλεπόμενη από το θεσμικό πλαίσιο μαθηματική παιδεία. γ) Να παρουσιάσουμε περιληπτικά την ύλη που διδάσκεται στο Γυμνάσιο. Θα αναφερθούμε επιγραμματικά στις βασικές έννοιες που διδάσκονται και αποτελούν τον βασικό κορμό της Μαθηματικής εκπαίδευσης στο Γυμνάσιο, καθώς και στις δευτερεύουσες Μαθηματικές έννοιες όπως αυτές παρουσιάζονται σε κάθε τάξη. δ) Να παρουσιάσουμε την ύλη που διδάσκονται οι μαθητές στα Μαθηματικά Γενικής Παιδείας στο μάθημα της ''Άλγεβρας'' στην Α, Β Λυκείου και στα ''Μαθηματικά και Στοιχεία Στατιστικής'' στην Γ Λυκείου. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τσίνος Χρήστος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Διακριτοποίηση ΣΔΕ, Μέθοδος Kahan, Ολοκληρωσιμότητα, Βάσεις Ηirota-Kimura Σύνοψη: Στην παρούσα διπλωματική εργασία μελετάμε τις ολοκληρώσιμες διακριτοποιήσεις «τύπου Kahan» σε γνωστά συστήματα συνήθων διαφορικών εξισώσεων. Η συγκεκριμένη μέθοδος μπορεί να εφαρμοστεί σε κάθε δευτεροβάθμειο πολυωνυμικό διανυσματικό πεδίο και εμφανίστηκε επίσης σε εργασίες των Hirota και Kimura. Λόγω ενός μηχανισμού που ακόμα δεν έχει κατανοηθεί πλήρως, τέτοιες διακριτοποιήσεις φαίνεται να κληρονομούν την ολοκληρωσιμότητα των αλγεβρικά πλήρως ολοκληρώσιμων συστημάτων, όπως έχει δειχθεί σε εργασίες των Petrera και συνεργατών. Ο στόχος της παρούσας εργασίας είναι η μελέτη και η εφαρμογή της ευρετικής αυτής μεθόδου για την διερεύνηση της ολοκληρωσιμότητας διακριτοποιήσεων σε γνωστά συστήματα διαφορικών εξισώσεων. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Παπαδήμα Νίκη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2015
Λέξεις Κλειδιά: Γάμμα συνάρτηση, Βήτα συνάρτηση Σύνοψη: Η συνάρτηση Γάμμα του Euler είναι μία από τις πλέον βασικές ειδικές συναρτήσεις, όχι μόνον της ανάλυσης αλλά και της μαθηματικής φυσικής. Η συνεχής έρευνα στην περιοχή των μαθηματικών και της φυσικής, δημιούργησε την ανάγκη επέκτασης της συνάρτησης Γάμμα. Μία από τις επεκτάσεις είναι η q-Γάμμα συνάρτηση, η οποία έγινε με την εισαγωγή του q-λογισμού. Στην εργασία αυτή, συγκεντρώνονται και καταγράφονται οι ιδιότητες της q-Γάμμα συνάρτησης, καθώς και ανισότητες, που ικανοποιούν οι συναρτήσεις αυτές και σχετικές με αυτές συναρτήσεις, οι οποίες προκύπτουν, κυρίως, από ιδιότητες μονοτονίας αυτών. Στο πρώτο κεφάλαιο της εργασίας αναφέρονται οι γνωστές ιδιότητες της συνάρτησης Γάμμα. Στο δεύτερο κεφάλαιο παρουσιάζονται τα βασικά απαραίτητα στοιχεία του q λογισμού. Στο τρίτο κεφάλαιο ορίζονται οι συναρτήσεις q-Γάμμα, q-Βήτα και q-ψ(x) καθώς και γίνεται αναφορά στις ιδιότητες που ισχύουν για αυτές. Στο τέταρτο κεφάλαιο αναφέρονται ιδιότητες μονοτονίας συναρτήσεων που περιέχουν q-Γάμμα συναρτήσεις καθώς και ανισότητες που ικανοποιούν οι συναρτήσεις αυτές. Τα αποτελέσματα, που καταγράφονται , είναι συγκεντρωμένα από επιστημονικές εργασίες, που έχουν δημοσιευτεί, σχετικές με τις q-Γάμμα συναρτήσεις και πολλά εξ αυτών είναι γενικεύσεις ανάλογων αποτελεσμάτων που αφορούν σε Γάμμα συναρτήσεις. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Μπιτχαβά Ειρήνη
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2011
Λέξεις Κλειδιά: Ροές επιτυχιών, Αξιοπιστία κ-από-τα-ν συστήματος αποτυχίας Σύνοψη: Θεωρούμε μια ακολουθία Χ1, Χ2,..., Χn (n>0) δυαδικών δοκιμών με πιθανά αποτελέσματα «επιτυχία» (S ή 1) ή «αποτυχία» (F ή 0), δηλαδή 1, αν το i-οστό στοιχείο της ακολουθίας είναι S Xi = , i=1,2,…,n. 0, αν το i-οστό στοιχείο της ακολουθίας είναι F. Τα αποτελέσματα xi {0,1}, i≥1, μπορεί να είναι διατεταγμένα σε μία γραμμή ή σε ένα κύκλο. Τα στοιχεία της ακολουθίας μπορεί να είναι ανεξάρτητες ή εξαρτημένες δυαδικές τυχαίες μεταβλητές. Μια ροή επιτυχιών ορίζεται ως μια ακολουθία συνεχόμενων επιτυχιών (S) των οποίων προηγούνται και έπονται αποτυχίες (F) ή τίποτα. Ο αριθμός των επιτυχιών σε μια ροή επιτυχιών αναφέρεται ως μήκος της ροής. Η έννοια των ροών έχει χρησιμοποιηθεί στην εφαρμοσμένη πιθανότητα και στη στατιστική συμπερασματολογία. Συγκεκριμένα, η μελέτη του αριθμού των ροών επιτυχιών σύμφωνα με διάφορα σχήματα απαρίθμησης, αποτελεί ένα ενδιαφέρον θέμα από την εποχή του De Moivre (1756). Στις αρχές του 1940, οι ροές χρησιμοποιήθηκαν σε ελέγχους υποθέσεων από τους Wald και Wolfowitz (1940), όπως επίσης και σε στατιστικούς ελέγχους ποιότητας από τους Mosteller (1941) και Wolfowitz (1943). Επιπλέον, έχουν χρησιμοποιηθεί σε πολλούς άλλους τομείς, όπως στη μετεωρολογία, στη μοριακή βιολογία (ακολουθίες DNA), στην αστρονομία, στην οικολογία, στην ψυχολογία, καθώς και στην αξιοπιστία συστημάτων. Η παρούσα εργασία επικεντρώνεται στην τυχαία μεταβλητή που μετρά τον αριθμό των ροών επιτυχιών μήκους τουλάχιστον ίσο με ένα συγκεκριμένο μήκος k (1≤k≤n), δηλαδή στην τυχαία μεταβλητή Gn,k. Θα παρουσιάσουμε μελέτες που έχουν γίνει για τη μεταβλητή αυτή σε ακολουθίες δυαδικών τυχαίων μεταβλητών, οι οποίες είναι διατεταγμένες σε μία γραμμή. Συγκεκριμένα, στο πρώτο κεφάλαιο θα ασχοληθούμε με ακολουθίες ανεξάρτητων (ισόνομων ή μη) δοκιμών και θα προσδιορίσουμε την κατανομή της τυχαίας μεταβλητής Gn,k μέσω πινάκων πιθανοτήτων μετάβασης (με τη μέθοδο εμβάπτισης σε Μαρκοβιανή αλυσίδα), αναδρομικών σχέσεων, αθροισμάτων διωνυμικών συντελεστών και μέσω αθροισμάτων πολυωνυμικών συντελεστών. Επιπλέον, θα παρουσιάσουμε εκφράσεις για τις πιθανογεννήτριες συναρτήσεις και θα δώσουμε τύπους για τη μέση τιμή και τη διασπορά της τυχαίας μεταβλητής Gn,k. Στη συνέχεια, θα δώσουμε άνω/κάτω φράγματα και προσεγγίσεις για την κατανομή της Gn,k, χρησιμοποιώντας τη μέση τιμή και τη διασπορά της. Ειδικά στην περίπτωση των ανεξάρτητων και ισόνομων δοκιμών, θα μελετήσουμε την προσέγγιση της κατανομής της Gn,k από μια κατανομή Poisson και από μια κανονική κατανομή, και θα δώσουμε εκφράσεις για τη δεσμευμένη κατανομή της Gn,k δοθέντος του αριθμού των επιτυχιών. Στο δεύτερο κεφάλαιο θα ασχοληθούμε με ακολουθίες εξαρτημένων δοκιμών. Θα μελετήσουμε δύο τύπους εξάρτησης, την ανταλλαξιμότητα και τη Μαρκοβιανή εξάρτηση πρώτης τάξης. Θα δώσουμε εκφράσεις για τη συνάρτηση πιθανότητας και τις ροπές της τυχαίας μεταβλητής Gn,k, καθώς και φράγματα για την κατανομή της. Επίσης, θα μελετήσουμε την τυχαία μεταβλητή ορισμένη σε ακολουθία που προκύπτει από το σχήμα δειγματοληψίας Pόlya-Eggenberger, ως ειδική περίπτωση της ανταλλαξιμότητας. Τέλος, στο τρίτο κεφάλαιο θα παρουσιάσουμε εκφράσεις για τον υπολογισμό της αξιοπιστίας ενός γραμμικού συνεχόμενου-k-από-τα-n-συστήματος αποτυχίας με ανεξάρτητες (ισόνομες ή μη) συνιστώσες, μέσω διωνυμικών συντελεστών, αναδρομικών σχέσεων και της μεθόδου εμβάπτισης σε Μαρκοβιανή αλυσίδα. Επίσης, θα ασχοληθούμε με την εφαρμογή της κατανομής της τυχαίας μεταβλητής Gn,k στην αξιοπιστία γραμμικών συνεχόμενων συστημάτων αποτυχίας. Ως αριθμητικό παράδειγμα για την εφαρμογή των μεθόδων που παρουσιάζονται, θα χρησιμοποιήσουμε την τυχαία μεταβλητή G5,2 και το γραμμικό συνεχόμενο-2-από-τα-5 σύστημα αποτυχίας. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Τάγιος Παναγιώτης
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2010
Λέξεις Κλειδιά: Στατιστικές μελέτες, Στατιστικό πακέτο R Σύνοψη: Οι εξετάσεις πιστοποίησης γνώσεων και δεξιοτήτων πληροφορικής, που αφορούν στο μεγαλύτερο μέρος εκπαιδευτικούς της πρωτοβάθμιας και δευτεροβάθμιας εκπαίδευσης στην Ελλάδα, δημιούργησε την επιθυμία της έρευνας των δεδομένων που έχουν καταγραφεί από το σύστημα. Αναλυτικότερα, στην εργασία αυτή στόχος είναι η ανάλυση με στατιστικές μεθόδους των δεδομένων, που έχουν καταγραφεί από το σύστημα TeCERT το χρονικό διάστημα 20/6/2003 μέχρι και 5/7/2007, με σκοπό να αναδειχθούν οι παράγοντες εκείνοι που επηρεάζουν άμεσα τον χρόνο απάντησης μίας ερώτησης και τον τρόπο με τον οποίο αντιμετωπίζεται ένα τεστ από τους εξεταζόμενους. Η ανάλυση των δεδομένων θα γίνει με χρήση του στατιστικού πακέτου R (έκδοση R 2.6.2). Το R είναι μία γλώσσα προγραμματισμού που χρησιμεύει κυρίως για ανάλυση δεδομένων και εφαρμογή διαφόρων "κλασικών" και σύγχρονων στατιστικών τεχνικών. Αποτελεί μετεξέλιξη των στατιστικών πακέτων S και S-Plus και μπορεί να αποκτηθεί δωρεάν από την ιστοσελίδα http://www.r-project.org/, ενώ υποστηρίζει πολλές πλατφόρμες και λειτουργικά όπως Linux, Mac OS και Windows. Μπορεί να χρησιμοποιηθεί είτε με κατευθείαν εντολές που υπάρχουν είτε με προγράμματα που ο χρήστης μπορεί να προγραμματίσει για επίλυση πολυπλοκότερων στατιστικών προβλημάτων. Επίσης, ο χρήστης μπορεί να χρησιμοποιήσει και έτοιμα προγράμματα τα οποία είναι ενσωματωμένα μέσα σε πακέτα που διατίθενται πάλι ελεύθερα. Η παρούσα διπλωματική εργασία δομείται σε κεφάλαια ως εξής: Στο Κεφάλαιο 2 αναλύεται το θεωρητικό υπόβαθρο που χρησιμοποιήθηκε για την εξαγωγή διαφόρων δεικτών και γραφημάτων. Επιπλέον, αναλύονται τα στατιστικά τεστ παραμετρικά ή μη, που χρησιμοποιήθηκαν για να ελεγχθεί η ορθότητα ή μη στατιστικών υποθέσεων. Στο Κεφάλαιο 3 δίνεται μία λεπτομερέστερη περιγραφή των δεδομένων. Από που προέρχονται τα δεδομένα, τα γνωστικά αντικείμενα των ερωτήσεων, το είδος των ερωτήσεων, αλλά και μία περιγραφή των δομών που κατασκευάστηκαν και χρησιμοποιήθηκαν στο στατιστικό πακέτο R κατά την έρευνα. Στο Κεφάλαιο 4 δίνεται η στατιστική επεξεργασία των δεδομένων ακολουθώντας τρεις άξονες. Στον πρώτο άξονα μελετάμε τη σχέση που έχει ο χρόνος απάντησης μίας ερώτησης με τα γνωστικά αντικείμενα και τα επίπεδα δυσκολίας της ερώτησης. Επίσης, μελετάμε τους χρόνους απάντησης και τα ποσοστά επιτυχίας των ερωτήσεων ανά πέρασμα. Τέλος, ελέγχουμε αν είναι ισοδύναμες οι ερωτήσεις "πατέρες" με τις ερωτήσεις κλώνους τους. Στον δεύτερο άξονα μελετάμε τους χρόνους ολοκλήρωσης των τεστ και τους αντίστοιχους χρόνους μέχρι να θεωρηθεί ένα τεστ επιτυχώς δοσμένο. Επιπλέον, ελέγχουμε τη βασική μας υπόθεση ότι όλα τα τεστ είναι ισοδύναμα. Στον τρίτο άξονα μελετάμε τη σχέση που έχει ο χρόνος απάντησης των ερωτήσεων σε σχέση με τον εξεταζόμενο, δηλαδή με στοιχεία του όπως η ειδικότητά του και η ηλικία του. Στο Κεφάλαιο 5 αναφέρονται συνοπτικά τα συμπεράσματα που προκύπτουν από την στατιστική επεξεργασία των δεδομένων. Τέλος, στο Κεφάλαιο 6 δίνεται η βιβλιογραφία που χρησιμοποιείται για την εκπόνηση της διπλωματικής εργασίας. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Μπόκος Αλέξανδρος
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Προγραμματισμός, Διαδικασία Σύνοψη: Η διδασκαλία των γενικών αρχών του προγραμματισμού, ειδικά όταν αφορά ηλικίες της πρώτης βαθμίδας εκπαίδευσης, συγκεντρώνει όλο και περισσότερο το ενδιαφέρον της ερευνητικής κοινότητας. Η εργασία αυτή έχει σαν σκοπό να παρουσιάσει μια πρόταση διδασκαλίας της έννοιας της διαδικασίας σε μαθητές πέμπτης και έκτης δημοτικού. Η προτεινόμενη διδακτική παρέμβαση αξιοποιεί το προγραμματιζόμενο ρομπότ δαπέδου Pro-Bot και προσπαθεί να διερευνήσει το βαθμό εξοικείωσης των μαθητών με την έννοια της διαδικασίας στον προγραμματισμό και να ανιχνεύσει τυχόν διδακτικά προβλήματα που προκύπτουν κατά τη διδασκαλία της. Αφού γίνει μια εισαγωγή στην έννοια της ρομποτικής και στα οφέλη που προκύπτουν από την ένταξή της στη μαθησιακή διαδικασία, περιγράφονται διάφορα διαθέσιμα πακέτα και γίνεται εκτενής αναφορά στο προγραμματιζόμενο ρομπότ Pro-Bot. Στη συνέχεια, παρουσιάζεται η έννοια και το περιβάλλον χρήσης της διαδικασίας, ενώ ερευνάται η βιβλιογραφία που σχετίζεται με την εφαρμογή της ρομποτικής στη διδασκαλία των διαδικασιών στην εκπαίδευση. Ακολουθεί η περιγραφή των στόχων και της μεθοδολογίας της έρευνας και παρουσιάζονται αναλυτικά οι δραστηριότητες, συνοδευόμενες από παρατηρήσεις και φωτογραφικό υλικό από την πορεία της διδασκαλίας. Τέλος, μέσα από την αξιολόγηση των φύλλων εργασίας και του υπόλοιπου υλικού, εξάγονται χρήσιμα συμπεράσματα. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Ρέτζεκα Μαρία
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2014
Λέξεις Κλειδιά: Συμμετρία, Πολύγωνα, Μαιευτική μέθοδος Σύνοψη: Η παρούσα εργασία μελετά τη διδασκαλία της Γεωμετρίας στα σχολεία και τον τρόπο που παρουσιάζεται στα σχολικά εγχειρίδια του Δημοτικού και του Γυμνασίου σε σχέση με το πρόσφατο παρελθόν. Πιο συγκεκριμένα, αντικείμενο της εργασίας είναι ο τρόπος διδασκαλίας των πολυγώνων και πολυέδρων στις παραπάνω βαθμίδες και η ανάδειξη της σημασίας της συμμετρίας στα σχολικά εγχειρίδια. Μάλιστα, μέσα από την παρουσίαση ενός πειράματος με δύο μαθήτριες του Δημοτικού, σχετικά με τα κανονικά πολύγωνα, προτείνεται η μαιευτική μέθοδος ως κατάλληλος τρόπος διδασκαλίας, ιδιαίτερα μεταξύ λίγων συμμετεχόντων. Η εργασία αυτή χωρίζεται σε τέσσερα κεφάλαια. Το πρώτο κεφάλαιο αναφέρεται στη Γεωμετρία των αρχαίων χρόνων και τον τρόπο που αναδύθηκε, ιδιαίτερα κατά τη γεωμετρική εποχή. Συμπεριλαμβάνεται μία σύντομη αναφορά στα πολύγωνα και στα πολύεδρα με ορισμούς και σχετικά θεωρήματα από την εποχή πριν τον Ευκλείδη έως και σήμερα. Στο δεύτερο κεφάλαιο περιλαμβάνεται η ιστορία της διδασκαλίας της Γεωμετρίας. Αναφέρονται τα αναλυτικά προγράμματα στην Ελλάδα τα οποία αφορούν στη διδασκαλία της Γεωμετρίας στο Δημοτικό και στο Γυμνάσιο, ιδιαίτερα όσο αφορά τους γεωμετρικούς μετασχηματισμούς και τα πολύγωνα, και τα πολύγωνα, και συγκρίνονται με τα αντίστοιχα προγράμματα της Αγγλίας και της Γαλλίας. Στο τρίτο κεφάλαιο παρουσιάζεται η έννοια της συμμετρίας και η ύπαρξή της στη φύση. Στη συνέχεια, περιγράφονται τα θέματα της συμμετρίας που διδάσκονται στις σχολικές τάξεις του Δημοτικού και του Γυμνασίου και τονίζεται η σημασία της εισαγωγής των γεωμετρικών μετασχηματισμών στις μικρές τάξεις. Στο τέταρτο και τελευταίο κεφάλαιο παρουσιάζεται μία έρευνα μικρής κλίμακας στην Ε΄ Δημοτικού που αφορά στους μετασχηματισμούς βασικών σχημάτων, συγκεκριμένα στα στοιχεία συμμετρίας του ισοπλεύρου τριγώνου, του κανονικού εξαγώνου και του κανονικού δεκάγωνου. Ακολουθεί η ανάλυση των απαντήσεων και του ρόλου της «μαιευτικής μεθόδου» που ακολουθήθηκε στην εκπαιδευτική διαδικασία. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Ξεπαπαδάκη Παναγιώτα
Κατηγορία: Διπλωματικές Εργασίες Μ.Δ.Ε - Έτος 2009
Λέξεις Κλειδιά: Θεωρία κινδύνου, Κίνδυνος αγοράς Σύνοψη: Στην παρούσα διπλωματική εργασία παρουσιάζεται μια μαθηματική προσέγγιση της θεωρίας κινδύνου. Η ποσοτικοποίηση των κινδύνων είναι σημαντική τόσο για τους χρηματοοικονομικούς οργανισμούς όσο και για τις ρυθμιστικές αρχές, ώστε να εξασφαλίζεται η επάρκεια των χρηματοοικονομικών ροών και η ασφάλεια των κεφαλαίων. Αρχικά αναφερόμαστε σε δύο σημαντικές μεθόδους μέτρησης κινδύνου, την Αξία-σε-Κίνδυνο (VaR) και το Αναμενώμενο Κατώφλι (Expected Shortfall), καθώς και στην σχέση μεταξύ τους. Στην συνέχεια επικεντρωνόμαστε στον υπολογισμό του κινδύνου αγοράς μέσω των μεθόδων διασποράς-συνδιασποράς, ιστορικής προσομείωσης και Monte Carlo. Ακολουθούν δύο στοιχειώδεις προσεγγίσεις του λειτουργικού κινδύνου: η προσέγγιση με βασικό δείκτη (BI) και η τυποποιημένη προσέγγιση. Ιδιαίτερη μελέτη πραγματοποιήθηκε στα μοντέλα μέτρησης του πιστωτικού κινδύνου που διακρίνονται στα κατασκευαστικά και τα μοντέλα μειωτικού-τύπου. ‘Ενας ακόμα σημαντικός κίνδυνος είναι ο συνιστάμενος, που συμβάλλει στην εύρεση ορίων, καθώς και στη διανομή του κεφαλαίου στους επιμέρους κινδύνους επιτυγχάνοντας την ασφάλεια της επένδυσης. Τέλος, αντικείμενο μελέτης αποτελούν τεχνικές που εφαρμόζουν τις παραπάνω μεθόδους μέτρησης κινδύνων στην οικονομία και πιο συγκεκριμένα στον χώρο των ασφαλίσεων. Αρχείο Διπλωματικής Εργασίας |
![]() ![]() ![]() Συγγραφέας: Λάσκαρη Ελένη
Κατηγορία: Διδακτορικές Διατριβές - Έτος 2010
Λέξεις Κλειδιά: Κρυπτογραφία,Κρυπτανάλυση, Υπολογιστική νοημοσύνη, Υπολογιστικά μαθηματικά, Κρυπτοσυστήματα, Συστήματα μη-γραμμικών εξισώσεων, Πρωτόκολλα ηλεκτρονικής συγκέντρωσης δεδομένων, Περιοδικές τροχιές Σύνοψη: Η διδακτορική διατριβή επικεντρώθηκε στη μελέτη νέων τεχνικών κρυπτογραφίας και κρυπτανάλυσης, αλλά και στην ανάπτυξη νέων πρωτοκόλλων για την ασφαλή ηλεκτρονική συγκέντρωση δεδομένων. Το πρώτο πρόβλημα το οποίο διερεύνησε η διατριβή ήταν η δυνατότητα εφαρμογής των μεθόδων Υπολογιστικής Νοημοσύνης στην κρυπτολογία. Στόχος ήταν η ανίχνευση των κρίσιμων σημείων κατά την εφαρμογή των μεθόδων αυτών στον πολύ απαιτητικό αυτό τομέα προβλημάτων και η μελέτη της αποτελεσματικότητας και της αποδοτικότητάς τους σε διάφορα προβλήματα κρυπτολογίας. Συνοψίζοντας, τα αποτελέσματα της διατριβής για την εφαρμογή μεθόδων Υπολογιστικής Νοημοσύνης στην κρυπτολογία υποδεικνύουν ότι παρά το γεγονός ότι η κατασκευή των αντικειμενικών συναρτήσεων είναι πολύ κρίσιμη για την αποδοτικότητα των μεθόδων, η Υπολογιστική Νοημοσύνη μπορεί να προσφέρει σημαντικά πλεονεκτήματα στον κλάδο αυτό όπως είναι η αυτοματοποίηση κάποιων διαδικασιών κρυπτανάλυσης ή κρυπτογράφησης, ο γρήγορος έλεγχος της σθεναρότητας νέων κρυπτοσυστημάτων αλλά και ο συνδυασμός τους με τυπικές μεθόδους που χρησιμοποιούνται μέχρι σήμερα για την αξιοποίηση της απλότητας και της αποδοτικότητάς τους. Το δεύτερο πρόβλημα που μελετάται στην διατριβή είναι η εφαρμογή μεθόδων αντίστροφης πολυωνυμικής παρεμβολής για την εύρεση της τιμής του διακριτού λογαρίθμου αλλά και του λογαρίθμου του Lucas. Για την μελέτη αυτή χρησιμοποιήθηκαν δύο υπολογιστικές μέθοδοι αντίστροφης πολυωνυμικής παρεμβολής, οι μέθοδοι Aitken και Neville, οι οποίες είναι κατασκευαστικές και επιτρέπουν την πρόσθεση νέων σημείων παρεμβολής για καλύτερη προσέγγιση του πολυωνύμου με μικρό υπολογιστικό κόστος. Η παρούσα μελέτη έδειξε ότι και με την προτεινόμενη μεθοδολογία το συνολικό κόστος υπολογισμού της τιμής των λογαρίθμων παραμένει υψηλό, ωστόσο η κατανομή των πολυωνύμων που έδωσαν την λύση των προβλημάτων δείχνει ότι η μεθοδολογία που χρησιμοποιήθηκε είτε εντόπισε την λύση στα πρώτα στάδια κατασκευής των πολυωνύμων είτε εντόπισε πολυώνυμα μικρού σχετικά βαθμού που προσεγγίζουν την αντίστοιχη λύση. Το τρίτο πρόβλημα που πραγματεύεται η παρούσα διατριβή είναι η δημιουργία νέων σθεναρών κρυπτοσυστημάτων με την χρήση μη-γραμμικών δυναμικών απεικονίσεων. Η αξιοποίηση των ιδιοτήτων του χάους στην κρυπτογραφία έχει αποτελέσει αντικείμενο μελέτης τα τελευταία χρόνια από τους ερευνητές λόγω της αποδεδειγμένης πολυπλοκότητας των συστημάτων του και των ιδιαίτερων στατιστικών ιδιοτήτων τους. Η διατριβή συνεισφέρει προτείνοντας ένα νέο συμμετρικό κρυπτοσύστημα που βασίζεται σε περιοδικές δυναμικές τροχιές και παρουσιάζει και τρεις τροποποιήσεις του που το καθιστούν ιδιαίτερα σθεναρό απέναντι στις συνήθεις κρυπταναλυτικές επιθέσεις. Δίνεται επίσης το υπολογιστικό κόστος κρυπτογράφησης και αποκρυπτογράφης του προτεινόμενου σχήματος και παρουσιάζονται πειραματικά αποτελέσματα που δείχνουν ότι η δομή των κρυπτογραφημάτων του κρυπτοσυστήματος δεν παρέχει πληροφορία για την ύπαρξη τυχόν μοτίβων στο αρχικό κείμενο. Τέλος, στην διατριβή αυτή προτείνονται δύο πρωτόκολλα για την ασφαλή ηλεκτρονική συγκέντρωση δεδομένων. Η συγκέντρωση δεδομένων από διαφορετικές βάσεις με ασφάλεια και ιδιωτικότητα θα ήταν σημαντική για την μελέτη των γνώσεων που ενυπάρχουν στα δεδομένα αυτά, με διάφορες μεθόδους εξόρυξης δεδομένων και ανάλυσης, καθώς οι γνώσεις αυτές ενδεχομένως δεν θα μπορούσαν να αποκαλυφθούν από την επιμέρους μελέτη των δεδομένων χωριστά από κάθε βάση. Τα δύο πρωτόκολλα που προτείνονται βασίζονται σε τροποποιήσεις πρωτοκόλλων ηλεκτρονικών εκλογών με τρόπο τέτοιο ώστε να ικανοποιούνται τα απαραίτητα κριτήρια ασφάλειας και ιδιωτικότητας που απαιτούνται για την συγκέντρωση των δεδομένων. Η βασική διαφορά των δύο πρωτοκόλλων είναι ότι στο ένα γίνεται χρήση έμπιστου τρίτου μέλους για την συγκέντρωση των δεδομένων, ενώ στο δεύτερο όχι. Και στις δύο περιπτώσεις, παρουσιάζεται ανάλυση της ασφάλειας των σχημάτων αλλά και της πολυπλοκότητάς τους αναφορικά με το υπολογιστικό τους κόστος. Αρχείο Διδακτορικής Διατριβής |
![]() ![]() ![]() Συγγραφέας: Ίτσιος Γεώργιος
Κατηγορία: Διδακτορικές Διατριβές - Έτος 2014
Λέξεις Κλειδιά: Θεωρία χορδών, Αβελιανή και μη-Αβελιανή Τ-δυϊκότητα, Υπερσυμμετρία, Υπερβαρύτητα, Αντιστοιχία AdS/CFT, Θεωρία βαθμίδας Σύνοψη: Στην παρούσα διδακτορική διατριβή μελετάμε εφαρμογές οι οποίες σχετίζονται με την μη-Αβελιανή Τ-δυϊκότητα και την αντιστοιχία AdS/CFT. Στο πρώτο μέρος, το οποίο αντιστοιχεί στο πρώτο κεφάλαιο της διατριβής, παρουσιάζουμε συνοπτικά τα απαραίτητα μαθηματικά εργαλεία που απαιτούνται για την καλύτερη κατανόηση των κεφαλαίων που ακολουθούν. Στο δεύτερο μέρος, το οποίο αποτελείται από τα κεφάλαια 2,3 και 4, ασχολούμαστε με την έννοια της μη-Αβελιανής Τ-δυϊκότητας. Ποιο συγκεκριμένα, στο δεύτερο κεφάλαιο παρουσιάζουμε τους κανόνες Buscher της Αβελιανής Τ-δυϊκότητα καθώς και την γενίκευση τους στην μη-Αβελιανή περίπτωση. Επίσης στο κεφάλαιο αυτό δείχνουμε τον τρόπο με τον οποίο μπορούμε να εφαρμόσουμε τους κανόνες της μη-Αβελιανής Τ-δυϊκότητας σε υπόβαθρα υπερβαρύτητας τύπου II τα οποία περιλαμβάνουν πεδία Ramond-Ramond. Η διαδικασία αυτή μπορεί να θεωρηθεί σαν μια τεχνική κατασκευής νέων λύσεων υπερβαρύτητας. Στο τρίτο κεφάλαιο θεωρούμε μια γενική κατηγορία υποβάθρων υπερβαρύτητας με ισομετρία SO(4) στα οποία εφαρμόζουμε τον μετασχηματισμό της μη-Αβελιανής Τ-δυϊκότητας ως προς την υποομάδα SU(2) της ομάδας ισομετρίας. Πραγματοποιώντας διαστατική ελάττωση στην αρχική και την δυϊκή θεωρία καταλήγουμε στην ίδια επταδιάστατη θεωρία. Ως αποτέλεσμα, οποιαδήποτε λύση αυτής της επταδιάστατης θεωρίας μπορεί να ανυψωθεί ταυτόχρονα στο αρχικό και στο δυϊκό υπόβαθρο. Η παρατήρηση αυτή μας παρέχει μια αντιστρεπτή απεικόνιση μεταξύ δυο λύσεων υπερβαρύτητας τύπου II οι οποίες συνδέονται με έναν μετασχηματισμό μη-Αβελιανής Τ-δυϊκότητας. Επίσης, για την συγκεκριμένη περίπτωση υποβάθρων αποδεικνύουμε ότι το δυϊκό υπόβαθρο διατηρεί τη μισή υπερσυμμετρία σε σχέση με το αρχικό. Στο τέταρτο κεφάλαιο μελετάμε τη δράση της μη-Αβελιανής Τ-δυϊκότητας σε μια σειρά από υπόβαθρα με υπερσυμμετρία N=1 των οποίων οι δυϊκές θεωρίες πεδίου είναι γνωστές. Σκοπός του κεφαλαίου αυτού είναι η μελέτη της μη-Αβελιανής Τ-δυϊκότητας στα πλαίσια της αντιστοιχίας AdS/CFT. Αυτό το επιτυγχάνουμε μελετώντας διάφορες ποσότητες των θεωριών πεδίου που αντιστοιχούν στο αρχικό και στο δυϊκό υπόβαθρο. Τέλος, στο πέμπτο κεφάλαιο κάνουμε χρήση τεχνικών ολογραφίας προκειμένου να μελετήσουμε το φαινόμενο της εισαγωγής φερμιονικών προσμίξεων σε τρισδιάστατες θεωρίες ύλης τύπου Chern-Simons, οι οποίες περιλαμβάνουν μεγάλο αριθμό γεύσεων. Αρχείο Διδακτορικής Διατριβής |
ΕπικοινωνίαΕργαστήριο Η/Υ & Εφαρμογών Πανεπιστημιούπολη, T.K. 265 00, Ρίο Πατρών Τηλ: +30 2610 997280 Φαξ: +30 2610 997424 lcsa@math.upatras.grΛοιποί Σύνδεσμοι Τμήματος
|
Ανάπτυξη & Συντήρηση Ιστοχώρου
Εργαστήριο Η/Υ & Εφαρμογών
Υπεύθ. Επικοινωνίας : Δ. Ανυφαντής (Ε.Τ.Ε.Π)
|