Διδακτορικές Διατριβές - Έτος 2011
Συγγραφέας: Νίκας Ιωάννης
Λέξεις Κλειδιά: Συστήματα πολυωνυμικών εξισώσεων, Παραμετρικές μη γραμμικές εξισώσεις, Μη γραμμικές διαστηματικές εξισώσεις, Διαστηματικές πολυωνυμικές εξισώσεις, Βελτιστοποίηση, Διαστηματική Newton, Διαστηματική Newton κλειστής θήκης, Διαστηματική αριθμητική κλειστής θήκης Σύνοψη: Η παρούσα διδακτορική διατριβή πραγματεύεται το θέμα της αποδοτικής και με βεβαιότητα εύρεσης όλων των ριζών της παραμετρικής εξίσωσης f(x;[p]) = 0, μιας συνεχώς διαφορίσιμης συνάρτησης f με [p] ένα διάνυσμα που περιγράφει όλες τις παραμέτρους της παραμετρικής εξίσωσης και τυποποιούνται με τη μορφή διαστημάτων. Για την επίλυση αυτού του προβλήματος χρησιμοποιήθηκαν εργαλεία της Διαστηματικής Ανάλυσης. Το κίνητρο για την ερευνητική ενασχόληση με το παραπάνω πρόβλημα προέκυψε μέσα από ένα κλασικό πρόβλημα αριθμητικής ανάλυσης: την αριθμητική επίλυση συστημάτων πολυωνυμικών εξισώσεων μέσω διαστηματικής ανάλυσης. Πιο συγκεκριμένα, προτάθηκε μια ευρετική τεχνική αναδιάταξης του αρχικού πολυωνυμικού συστήματος που φαίνεται να βελτιώνει σημαντικά, κάθε φορά, τον χρησιμοποιούμενο επιλυτή. Η ανάπτυξη, καθώς και τα αποτελέσματα αυτής της εργασίας αποτυπώνονται στο Κεφάλαιο 2 της παρούσας διατριβής. Στο επόμενο Κεφάλαιο 3, προτείνεται μια μεθοδολογία για την αποδοτική και αξιόπιστη επίλυση μη-γραμμικών εξισώσεων με διαστηματικές παραμέτρους, δηλαδή την αποδοτική και αξιόπιστη επίλυση διαστηματικών εξισώσεων. Πρώτα, δίνεται μια νέα διατύπωση της Διαστηματικής Αριθμητικής και αποδεικνύεται η ισοδυναμία της με τον κλασσικό ορισμό. Στη συνέχεια, χρησιμοποιείται η νέα διατύπωση της Διαστηματικής Αριθμητικής ως θεωρητικό εργαλείο για την ανάπτυξη μιας επέκτασης της διαστηματικής μεθόδου Newton που δύναται να επιλύσει όχι μόνο κλασικές μη-παραμετρικές μη-γραμμικές εξισώσεις, αλλά και παραμετρικές (διαστηματικές) μη-γραμμικές εξισώσεις. Στο Κεφάλαιο 4 προτείνεται μια νέα προσέγγιση για την αριθμητική επίλυση του προβλήματος της Ολικής Βελτιστοποίησης με περιορισμούς διαστήματα, χρησιμοποιώντας τα αποτελέσματα του Κεφαλαίου 3. Το πρόβλημα της ολικής βελτιστοποίησης, ανάγεται σε πρόβλημα επίλυσης διαστηματικών εξισώσεων, και γίνεται εφικτή η επίλυσή του με τη βοήθεια των θεωρητικών αποτελεσμάτων και της αντίστοιχης μεθοδολογίας του Κεφαλαίου 3. Στο τελευταίο Κεφάλαιο δίνεται μια νέα αλγοριθμική προσέγγιση για το πρόβλημα της επίλυσης διαστηματικών πολυωνυμικών εξισώσεων. Η νέα αυτή προσέγγιση, βασίζεται και γενικεύει την εργασία των Hansen και Walster, οι οποίοι πρότειναν μια μέθοδο για την επίλυση διαστηματικών πολυωνυμικών εξισώσεων 2ου βαθμού. Αρχείο Διδακτορικής Διατριβής |
Συγγραφέας: Μάτζαρης, Απόστολος
Λέξεις Κλειδιά: Τελική συν-άλγεβρα, Συν-ελεύθερη συν-άλγεβρα Σύνοψη: Η παρούσα διατριβή ασχολείται με την ύπαρξη και κατασκευή της τελικής και συν-ελεύθερης συν-αλγεβρας για πεπερασμένα παρουσιάσιμους ενδοσυναρτητές σε προσιτές κατηγορίες. Αρχείο Διδακτορικής Διατριβής |
Συγγραφέας: Κωστόπουλος Αριστοτέλης
Λέξεις Κλειδιά: Τεχνητά νευρωνικά δίκτυα, Βελτιστοποίηση, Συζυγείς κλίσεις, Γραμμική αναζήτηση, Στρατηγικές επανεκκίνησης, Ρυθμός εκπαίδευσης, Αλγόριθμος εκπαίδευσης, Ολική σύγκλιση Σύνοψη: Αρχείο Διδακτορικής Διατριβής |
Συγγραφέας: Αποστολοπούλου Μαριάννα
Λέξεις Κλειδιά: Προβλήματα μεγάλης κλίμακας, Υποπρόβλημα περιοχής εμπιστοσύνης, Μέθοδος σχεδόν ακριβούς λύσης, Καμπυλόγραμμη αναζήτηση, Μέθοδοι Quasi-Newton, Μέθοδος L-BFGS, Κατεύθυνση αρνητικής καμπυλότητας, Ιδιοτιμές-ιδιοδιανύσματα Σύνοψη: Στην παρούσα διατριβή μελετάμε το πρόβλημα της βελτιστοποίησης μη γραμμικών συναρτήσεων πολλών μεταβλητών, όπου η αντικειμενική συνάρτηση είναι συνεχώς διαφορίσιμη σε ένα ανοιχτό υποσύνολο του Rn. Αναπτύσσουμε μαθηματικές μεθόδους βελτιστοποίησης αποσκοπώντας στην επίλυση προβλημάτων μεγάλης κλίμακας, δηλαδή προβλημάτων των οποίων οι μεταβλητές είναι πολλές χιλιάδες, ακόμα και εκατομμύρια. Η βασική ιδέα των μεθόδων που αναπτύσσουμε έγκειται στη θεωρητική μελέτη των χαρακτηριστικών μεγεθών των Quasi-Newton ενημερώσεων ελάχιστης και μικρής μνήμης. Διατυπώνουμε θεωρήματα αναφορικά με το χαρακτηριστικό πολυώνυμο, τον αριθμό των διακριτών ιδιοτιμών και των αντίστοιχων ιδιοδιανυσμάτων. Εξάγουμε κλειστούς τύπους για τον υπολογισμό των ανωτέρω ποσοτήτων, αποφεύγοντας τόσο την αποθήκευση όσο και την παραγοντοποίηση πινάκων. Τα νέα θεωρητικά απoτελέσματα εφαρμόζονται αφενός μεν στην επίλυση μεγάλης κλίμακας υποπροβλημάτων περιοχής εμπιστοσύνης, χρησιμοποιώντας τη μέθοδο της σχεδόν ακριβούς λύσης, αφετέρου δε, στην καμπυλόγραμμη αναζήτηση, η οποία χρησιμοποιεί ένα ζεύγος κατευθύνσεων μείωσης, την Quasi-Newton κατεύθυνση και την κατεύθυνση αρνητικής καμπυλότητας. Η νέα μέθοδος μειώνει δραστικά τη χωρική πολυπλοκότητα των γνωστών αλγορίθμων του μη γραμμικού προγραμματισμού, διατηρώντας παράλληλα τις καλές ιδιότητες σύγκλισής τους. Ως αποτέλεσμα, οι προκύπτοντες νέοι αλγόριθμοι έχουν χωρική πολυπλοκότητα Θ(n). Τα αριθμητικά αποτελέσματα δείχνουν ότι οι νέοι αλγόριθμοι είναι αποδοτικοί, γρήγοροι και πολύ αποτελεσματικοί όταν χρησιμοποιούνται στην επίλυση προβλημάτων με πολλές μεταβλητές. Αρχείο Διδακτορικής Διατριβής |
ΕπικοινωνίαΕργαστήριο Η/Υ & Εφαρμογών Πανεπιστημιούπολη, T.K. 265 00, Ρίο Πατρών Τηλ: +30 2610 997280 Φαξ: +30 2610 997424 lcsa@math.upatras.grΛοιποί Σύνδεσμοι Τμήματος
|
Ανάπτυξη & Συντήρηση Ιστοχώρου
Εργαστήριο Η/Υ & Εφαρμογών
Υπεύθ. Επικοινωνίας : Δ. Ανυφαντής (Ε.Τ.Ε.Π)
|