Αποτελέσματα 1 μέχρι 1 από 1

Θέμα: 14o Σεμινάριο Μη Γραμμικών Συστημάτων

  1. #1
    bountis
    Guest

    Παρουσίαση 14o Σεμινάριο Μη Γραμμικών Συστημάτων

    Τα Σεμινάρια Μη Γραμμικών Συστημάτων του ακαδημαϊκού έτους 2015 - 16 συνεχίζονται αυτή την εβδομάδα με την παρουσίαση που ανακοινώνεται πιο κάτω. Τα Σεμινάρια αυτά έχουν εισαγωγικό χαρακτήρα και γίνονται με στόχο την ενημέρωση σε σύγχρονα θέματα Μη Γραμμικής Επιστήμης και Πολυπλοκότητας. Νέοι ερευνητές και μεταπτυχιακοί φοιτητές όλων των Τμημάτων της Σχολής Φυσικών Επιστημών και της Πολυτεχνικής Σχολής που ενδιαφέρονται καλούνται να τα παρακολουθήσουν και να παρουσιάσουν ομιλία τους μετά από συνεννόηση με τον υπεύθυνο Καθηγητή των σεμιναρίων.

    Χώρος: Αίθουσα Σεμιναρίων 342 Κτήριο Μαθ./Βιολ.
    Χρόνος: 6 - 7:30 μ.μ. Πέμπτη, 26 Μαίου, 2016
    Τίτλος: Αντιστρέψιμες Απεικονίσεις, η Μέθοδος Παραμετροποίησης και Εντοπισμένες Ταλαντώσεις σε Μη Γραμμικά Πλέγματα
    Ομιλητής: Τάσος Μπούντης, Καθηγητής, Τμήμα Μαθηματικών

    Περίληψη

    Θα παρουσιάσω πρόσφατη έρευνα που συνδυάζει τρία θέματα: Αντιστρέψιμες απεικονίσεις, ομοκλινικές τροχιές και «διακριτές πνοές» (εντοπισμένες ταλαντώσεις) ως αναλυτικές προσεγγίσεις αναλλοίωτων πολλαπλοτήτων. Θα αναφερθώ στο ότι αρχικές συνθήκες για «πνοές» σε 1-Διάστατα (1Δ) Χαμιλτώνια πλέγματα μπορούν να προσεγγισθούν μέσω ομοκλινικών τροχιών αντιστρέψιμων απεικονίσεων. Για 1-Δ πλέγματα τύπου Klein-Gordon (KG), αρκεί να χρησιμοποιήσει κανείς 2-Δ απεικονίσεις με κυβική μη γραμμικότητα. Κατόπιν θα αποδείξουμε την ύπαρξη υπερβολικών αναλλοίωτων συνόλων για την απεικόνιση αυτή, στη διατηρητική περίπτωση (παράμετρος απωλειών δ=1), παραγόμενων αναλυτικά από εγκάρσια τεμνόμενες αναλλοίωτες πολλαπλότητες μέσω αναπτυγμάτων σειρών της Μεθόδου Παραμετροποίησης (ΜΠ). Μετά θα μεταβάλουμε το δ < 1 για να εντοπίσουμε με ακρίβεια την τιμή δ = δc ομοκλινικής εφαπτομενικότητας όπου οι τομές παύουν να υπάρχουν. Τέλος, θα γενικεύσω τα αποτελέσματα αυτά στην περίπτωση 4-Δ απεικονίσεων που περιγράφουν αρχικές συνθήκες για «πνοές» σε δύο συζευγμένα πλέγματα τύπου KG. Αν και το πρόβλημα γίνεται πιο δύσκολο, η ΜΠ εφαρμόζεται με επιτυχία και προσφέρει ακριβή ομοκλινικά σημεία και ομοκλινική εφαπτομενικότητα σε 4 διαστάσεις.
    Τελευταία επεξεργασία από dany; 24-05-2016 την 11:50.

Δικαιώματα Δημοσιεύσεων

  • Δεν επιτρέπεται να δημοσιεύσετε νέα θέματα
  • Δεν επιτρέπεται να επεξεργαστείτε τις απαντήσεις
  • Δεν επιτρέπεται να ανεβάσετε επισυναπτόμενα
  • Δεν επιτρέπεται να επεξεργαστείτε τις δημοσιεύσεις σας
  •  
  • BB κώδικας είναι Ενεργός
  • Smilies είναι Απενεργοποιημένα
  • [IMG] κώδικας είναι Ενεργός
  • [VIDEO] κώδικας είναι Ενεργός
  • HTML κώδικας είναι Ενεργός
Επικοινωνία
Εργαστήριο Η/Υ & Εφαρμογών
Πανεπιστημιούπολη, T.K. 265 00, Ρίο Πατρών
Τηλ: +30 2610 997280
Φαξ: +30 2610 997424
lcsa@math.upatras.gr
Ακολουθήστε μας
Ανάπτυξη & Συντήρηση Ιστοχώρου
Εργαστήριο Η/Υ & Εφαρμογών
Εργαστήριο Η/Υ & Εφαρμογών
Υπεύθ. Επικοινωνίας : Δ. Ανυφαντής (Ε.Τ.Ε.Π)