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Abstract: This paper offers instructional interventions designed to support undergraduate math 

students’ understanding of two forms of representations of Calculus concepts, mathematical 

language and graphs. We first discuss issues in students’ understanding of mathematical 

language and graphs related to Calculus concepts. Then, we describe tasks, which are situated in 

the context of the Intermediate Value Theorem, that are designed to promote students’ 

understanding of multiple quantifiers in mathematical statements, as well as outputs and points 

on graphs of functions in the Cartesian plane. We offer suggestions for instruction and include 

sample dialogue to illustrate how these tasks may be used in the classroom.  
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1. INTRODUCTION 
 

Many undergraduate students enroll in a Calculus course at some point in their program to 

fulfill requirements for degrees not only in mathematics, but also in business, life sciences, 

engineering, and other mathematically-situated fields [7]. Mathematics education researchers 

have reported student difficulty with concepts at the heart of Calculus, including limits, 

continuity, derivatives, and integrals [13, 18, 19, 21, 22]. To better support students in 

understanding these ideas, researchers and mathematicians have developed instructional 

interventions for classroom teaching of these concepts [9, 11, 20]. In our experience, students 

often face difficulties not only with understanding and applying the concepts in Calculus, but 
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also with understanding the ways in which these concepts are presented in textbooks. For 

instance, textbooks often provide mathematical statements and graphical illustrations when 

presenting the definitions and theorems central to Calculus. The intent of both mathematical 

statements and accompanying graphical illustrations is to support students’ understanding of the 

relevant concept. However, research suggests students may not interpret mathematical language 

or the graphical representations found throughout Calculus in the ways intended [3, 4, 5, 8, 12, 

15, 16]. Although students may understand aspects of a mathematical concept, some of them 

may have difficulty in expressing the concept with mathematical representations [10, 14]. From 

our perspective, the understanding of the representations of concepts in Calculus and the 

concepts themselves are inherently intertwined. Furthermore, students’ understanding of the 

representations of concepts in Calculus may promote their understanding of the mathematical 

concepts and vice versa.   

In this paper, we propose instructional interventions aimed at supporting students in 

understanding two modes of representations of Calculus concepts, mathematical language and 

graphical representations. We use the Intermediate Value Theorem (IVT) as the context for the 

tasks in our interventions, as the IVT is a representative example of a Calculus concept that is 

presented through both language and graphs. The mathematical language of the IVT, which 

includes ‘if-then’ structure and multiple quantifiers, is commonly found in other statements from 

Calculus. Also, like other statements from Calculus, it is often accompanied by a graphical 

representation. Although we view our interventions as relevant to Calculus courses, we anticipate 

that instructors of more advanced mathematics courses may find them useful as well. 
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While we situate our discussion in the context of the IVT, the goal of this paper is not to 

illustrate how to teach students to use or prove the IVT. Rather, we use the IVT in this paper as 

an example of how to teach the mathematical language and graphical representations used to 

present the concepts of Calculus. First, we share samples from our observations of issues in 

students’ understanding of these two representations of the IVT, not simply to point out student 

errors, but in order to highlight possible student issues for instructors to be aware of. We then 

present tasks for teaching the mathematical language and graphical representations found in 

undergraduate Calculus courses using the IVT, specifically designed to address the issues we 

observed. We include suggestions for instructors to employ, modify, or extend these tasks in the 

classroom. Finally, we conclude with a discussion of the implications of teaching the 

representations of Calculus concepts.  

 
2. ISSUES IN STUDENTS’ UNDERSTANDING OF REPRESENTATIONS OF THE 

INTERMEDIATE VALUE THEOREM 
 

The Intermediate Value Theorem (IVT) is one of the central mathematical statements 

introduced to students in Calculus textbooks [e.g., 6, 17]. One such version of the statement is as 

follows:  

The Intermediate Value Theorem. Suppose that f is a continuous function on [a, b] such 
that f(a)≠f(b). Then for all real numbers N between f(a) and f(b), there exists a real number c 
in (a, b) such that f(c)=N (adapted from [17]). 
  

Some textbooks capture this idea succinctly as follows: A continuous function f on a closed 

interval [a, b] takes on every value between f(a) and f(b) (e.g., adapted from [6]). Often, the IVT 

statements are also accompanied by graphical representations like the ones in Figure 1 [e. g., 17].  
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Figure 1. Possible graphs illustrating the IVT [3, p. 93] 

 
The graph in Figure 1 (left) illustrates that for an output value, N, between f(a) and f(b), there is a 

corresponding value of the input, c, between a and b, such that f(c) =N. In the graph in Figure 1 

(right), a value for N is shown with multiple corresponding input values for c, c1, c2, c3, such that 

f(c)=N. Together with the theorem statement, these graphs can be used to help illustrate that for 

continuous functions, for each output value in a certain range, the IVT guarantees the existence 

of at least one corresponding input value, resulting in the output value.  

In recent research that we have conducted, we found that the representations of the IVT 

played a crucial role in students’ understanding of the theorem. Specifically, students struggled 

with the mathematical language of the IVT statement, including the multiple quantifiers it 

contains [16]. When explaining the meaning of the IVT, some students used graphical 

representations in unconventional ways, which often led them to incorrectly interpret the 

statement [3].  

In the following sections, we discuss in more detail the issues we observed in students’ 

interpretation of mathematical language and graphical representations of the IVT. We note that 

in our descriptions below, our primary purpose is not to evaluate student thinking, but to try to 

understand where and how student thinking may differ from mathematical convention. In this 
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regard, we use normative understandings as a reference point to understand how students make 

sense of mathematical language and graphical representations. 

 
2.1 Issues in Students’ Understanding of Mathematical Language 
 

In our research [16], we conducted clinical interviews [2] in which we asked nine 

undergraduate students who had completed at least Calculus I to evaluate and explain what the 

IVT statement means in their own words, as stated above. We did not tell the students that this 

statement was the IVT. While most students correctly evaluated the statement as true, we found 

that many of these students’ explanations of the meaning of the statement were not compatible 

with our understanding of the theorem as previously described. For example, one student, Mike, 

who had completed not only Calculus I, but also a Transition-to-Proof course, re-ordered the 

quantifiers in his explanation of the IVT. He claimed: “it is stating that there exists a real number 

c between the interval (a, b) such that a function at that number is all the real numbers.” Mike 

interpreted the IVT statement as if it claimed the existence of a value c for all outputs [N]. 

Because Mike reversed the order of the quantifiers (there exists, for all) from the given IVT 

statement, he concluded that the statement was false. While Mike reversed the order of the 

quantifiers but maintained the attached variables (c, N) to each quantifier, we observed other 

students who reversed both the order of the quantifiers and variables in the IVT. Our findings 

align with previous research indicating that students may switch the order of the variables [12], 

as well as switch the order of quantifiers in mathematical statements [5].  

Given the complexity of the language in statements like the IVT, it is understandable why 

students may confuse the order of the quantifiers or variables, especially since most Calculus 

students receive no formal instruction on the meaning of quantifiers explicitly when the IVT is 



	
PREPRINT VERSION 
In press in PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies 

 
 

introduced in Calculus. Additionally, the order of the quantifiers in a statement communicates 

important relationships between the variables involved in the statement. For instance, in the IVT 

statement, the mathematical language ‘for all N, there exists c’ suggests that the value(s) of c 

depends on the selection of N, although such a dependence of c on N is not explicitly stated in 

the wording of the statement. The effects of how students understand the mathematical language 

used to describe concepts like the IVT extend beyond Calculus. The way in which students 

interpret the order of quantifiers or variables in mathematical statements may impact how they 

apply statements like the IVT in context or write proofs of these statements. Thus, from our 

perspective, students’ understanding of mathematical language is vital to their understanding of 

the concepts of Calculus, which provide a foundation for advanced mathematics. 

2.2 Issues with Students’ Understanding of Graphical Representations 
 

In our research [3], we also observed students who interpreted aspects of graphical 

representations in unconventional ways, which in turn led to unconventional interpretations of 

the IVT.  Nate, who had completed Calculus, and recently completed an Introductory Analysis 

course, was one such student. Nate correctly interpreted the order of the quantifiers and variables 

in the IVT. However, when he explained the IVT with a graph, we found that he interpreted the 

meaning of the statement unconventionally due to his meaning for points on the graph. 

Specifically, we discovered that Nate interpreted outputs of the function as points on the graph, 

rather than as output values on the y-axis. He described N’s between f(a) and f(b) and labeled a 

point as ‘N’ whose outputs values were outside the range of outputs between f(a) and f(b) (see 

Figure 2.). Due to his understanding of N as a point on the graph, Nate explained that the phrase 

‘N between f(a) and f(b)’ in the IVT statement referred to all points along the graph, rather than a 
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limited range of output values on the y-axis. Nate’s unconventional interpretation of points on 

the graph of a function affected his understanding of the IVT statement. In fact, Nate’s 

interpretation of the IVT as guaranteeing the existence of a value for c for each point on the 

graph between the endpoints does not depend on the continuity of the function and is trivially 

true. 

 
Figure 2. Nate’s labels of possible N’s between f(a) and f(b) 

 
Nate was not the only student who interpreted N’s between f(a) and f(b) not as values, but as 

points on the graph. In fact, almost half of the students whom we interviewed, including Nate, 

indicated during some portion of the interview that they thought about points on graphs as 

outputs of functions, rather than as ordered pairs of input and output values of functions [3]. 

Interpreting points on graphical representations in this way led students to misunderstand the 

statements we presented and, consequently, to evaluate some of the statements incorrectly. In 

addition to influencing students’ understanding of concepts like the IVT, we anticipate that their 

understanding of graphs would impact their comprehension of mathematical statements, their 

abilities to prove theorems, and other activities in advanced mathematics courses that rely 

heavily on graphical representations of functions. Graphs have been shown to be a powerful 

support for students [1], and may assist them in better understanding the distinctions in 

Nate’s labels 
for N’s 
between f(a) 
and f(b) at 
points along 
the graph. 
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mathematical language. However, in order for graphs to be a powerful support, students need to 

interpret them in line with mathematical convention. 

 
3. TASKS & SUGGESTIONS FOR INSTRUCTION 
 

The tasks we present in this paper are designed to actively engage students in experiencing 

issues in their understanding of mathematical language and graphical representations firsthand. 

As such, we do not expect that all students will work through these tasks with ease and accuracy. 

Instead, we intend for these tasks to give students the opportunity to experience cognitive 

conflict [18]. In our view, students may experience cognitive conflict regarding a concept when 

they encounter a situation which, from their perspective, challenges their current understanding 

of that concept. In order to resolve this conflict between their own understanding and the 

situation at hand, the student may adjust their understanding to account for the new situation, by 

reflecting on their own thinking. Thus, experiencing and resolving cognitive conflict could 

promote student learning. 

In this section, we present Tasks 0-3 designed to support classroom discourse around the 

mathematical language and graphical representations of concepts in Calculus. Along with each 

task, we include suggestions for how an instructor may use them in the classroom. Table 1, 

below, offers an overview of each task, including a description of the purpose of each task and 

materials used with the task.  

Table 1. Outline of Tasks 
Task 0: Presentation and Evaluation of Statements 

  Purpose: Familiarize students with the four statements used throughout the intervention 
  Materials: Statements (Table 2) 

Task 1: Discussion of Mathematical Language 
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Task 1.1: Students Compare Meaning of the Statements 
                Purpose: Orient students to the meaning of quantifier, variable order in the four statements 
                Materials: Statements (Table 2), Polling Method 
Task 1.2: Students Discuss Meaning of Order of Quantifiers and Variables 
                Purpose: Direct students’ attention to the role of quantifier, variable order in the statements 
                Materials: Statements (Table 2), Sample Student Responses (Table 3) 
Task 2: Discussion of Graphical Representations 
Task 2.0: Students Create Graphs to Explain Statement 1 
                Purpose: Uncover students’ current meanings for outputs, points on graphs of various  
                functions 
                Materials: Statement 1 (Table 2) 
Task 2.1: Students Discuss Meaning of Points on Cartesian Graph 
                Purpose: Orient students to the meaning for outputs, points on the graphs of functions,   
                expose students to non-monotone graph  
                Materials: Sample Student Responses & Labeled Graphs (Table 4), Graph (Figure 3) 
Task 2.2: Instruction on Cartesian Plane Graphs 
                Purpose: Provide instruction on conventions of graphing in Cartesian coordinates  
                Materials: Labeled Graph (Figure 4) 
Task 3: Re-evaluation of Statements with Graphs 

   Purpose: Provide opportunity for students to apply their (potentially) refined meanings for  
   mathematical language and graphical representations of functions  
   Materials: Statements (Table 2) & Unlabeled Graphs (Figure 1 & 4) 

  
For our purposes, these tasks are designed to create situations in which cognitive conflict 

may arise for students relative to their understanding of mathematical language and graphs. In 

addition, these tasks may be used by an instructor in class to reveal students’ issues with these 

representations, similar to the issues we observed as described in Section 2. Although these tasks 

alone may not provide a resolution for these issues, they might bring them to light for discussion 

among students and the instructor, which may facilitate their resolution. While we provide these 

tasks in a given order, we recognize that instructors may wish to use the tasks flexibly to meet 

the needs of their students. 

3.0 Task 0: Presentation and Evaluation of Statements 
 

In Task 0, students read and evaluate the four statements in Table 2. 

Table 2. IVT and Similar Statements 
Statement 1 Suppose f is a continuous function on [a, b] and that f(a)≠f(b). Then for all real numbers c 

in (a, b), there exists a real number N between f(a) and f(b) such that f(c)=N. 
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Statement 2 
(IVT) 

Suppose f is a continuous function on [a, b] and that f(a)≠f(b). Then for all real numbers N 
between f(a) and f(b), there exists a real number c in (a, b) such that f(c)=N. 

Statement 3 Suppose f is a continuous function on [a, b] and that f(a)≠f(b). Then there exists a real 
number N between f(a) and f(b), such that for all real numbers c in (a, b), f(c)=N. 

Statement 4 Suppose f is a continuous function on [a, b] and that f(a)≠f(b). Then there exists a real 
number c in (a, b), such that for all real numbers N between f(a) and f(b), f(c)=N. 

 
Typically, Statement 2 (the IVT) alone is introduced to students in Calculus courses. However, 

students may not recognize the necessity of the particular ordering of the quantifiers and 

variables describing the IVT (see Mike’s case in the section 2.1). Therefore, we suggest 

presenting the IVT along with other statements that are similar to the IVT, but contain a different 

order of quantifiers or variables, as shown in Table 2. In Table 2, Statement 2 is the IVT, 

Statement 4 contains a reordering of the quantifiers, Statement 1 contains a reordering of the 

variables, and Statement 3 has both. Each of these statements has a distinct meaning, given the 

particular arrangement of the quantifiers and variables. Providing each of these combinations of 

quantifiers and variables may give students the opportunity to reflect on the differences in 

semantic meaning in the statements, which they may not have had previously.  

While using this task, we recommend that an instructor not tell students that the IVT is 

among the statements, so students rely on their own thinking rather than external authority. 

Asking the students to evaluate the statements invites students to carefully consider the meaning 

of each of the statements and may promote a comparison of the statements. Depending on 

students’ prior experience to reading mathematical language, some students may have more 

difficulty accessing the differences among the statements without additional resources. In this 

case, we suggest asking students to graph functions or to provide graphs of functions to help 

them think about the statements, which we include in Tasks 2 and 3. Once students have had 
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sufficient time to familiarize themselves with the statements and evaluate each one, the instructor 

may proceed to Task 1. 

 
3.1 Task 1: Discussion of Mathematical Language 
 

Task 1 is designed to draw students’ attention to the order of the quantifiers and the variables 

in the statements in Table 2. Task 1 is divided into two parts. In Task 1.1, students compare the 

meaning of the statements and group statements according to which they believe have the same 

meaning. In Task 1.2, students discuss the meaning of the quantifier and variable order by 

comparing and evaluating sample student responses regarding the meaning of the statements.  

 
3.1.1 Task 1.1: Students Compare Meaning of the Statements 
 

In Task 1.1, students compare the meanings of each of the statements in Table 2 to decide 

whether they think any of the statements are the same in meaning. We suggest that an instructor 

poll students’ responses in the class, using clickers or a show-of-hands, from the following 

choices: 

A) All four statements are the same in meaning. 
B) Statements 1 and 2 are the same and Statements 3 and 4 are the same. 
C) Statements 1 and 3 are the same and Statements 2 and 4 are the same. 
D) Statements 1 and 4 are the same and Statements 2 and 3 are the same. 
E) All four statements are different in meaning. 

 
These five choices capture many of the ways students may compare the meaning of the four 

statements, as we observed in our study [16]. Once students have had time to consider and 

compare the meanings of the four statements and respond to the question above, the instructor 

may proceed to Task 1.2. 
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3.1.2 Task 1.2: Students Discuss Meaning of Order of Quantifiers and Variables 
 

The results of the poll in Task 1.1 may indicate possible issues students may have with 

understanding why the order of the quantifiers or variables matters. Table 3 includes some 

sample student responses for choices A-E from the poll regarding the meaning of the four 

statements, which we created based on real student responses from our previous research [16]. 

 
Table 3. Sample Student Reasoning for Selecting A–E in Task 1 
Sample Student Responses Characteristics of Student Responses  

Anees: To me, all four statements 
mean the same thing. They are all 
saying for continuous functions, 
the input is c and the output is N 
in the equation ‘f(c)=N.’ 
 

No attention to quantifiers. Anees’ 
response does not contain quantifier words 
such as “for all” and “there exists.” Rather 
than attending to quantifiers, Anees’ 
response indicates an attention only to the 
input-output relationship of c and N in the 
equation ‘f(c)=N.’ Anees’ response may be 
typical for students with limited exposure 
to quantified statements. 

 

Basil: Statements 1 and 2 both 
mean the same thing and 
statements 3 and 4 mean the same 
thing. Statements 1 and 2 both 
have “for all” first and 
statements 3 and 4 both have 
“there exists” first. 

Distinction in quantifier order but not 
variable order. Unlike Anees, Basil 
recognizes that “for all” appearing first in 
the statement has a distinct meaning from 
“there exists” appearing first. However, his 
response does not contain a distinction in 
the order of the variables, N and c.  

 

Carlos: Statements 1 and 3 are 
the same and statements 2 and 4 
are the same. Statement 1 says for 
all c, there exists an N and 
Statement 3 says there exists an N 
for all c. Saying “for all inputs, c, 
you can find an output, N” is the 
same as saying “there is an 
output N for all inputs c.” 

No distinction in quantifier order but 
keeps attached variable. Carlos thinks 
reversing the order of the quantifiers has 
no effect on the meaning of the statements. 
Carlos does maintain the attachment of the 
variables to the quantifiers.  

 

Dalia: Statements 1 and 4 are the 
same and statements 2 and 3 are 
the same. I see that c comes 
before N in statements 1 and 4 
and that N comes before c in 
Statements 2 and 3. 

Distinction in variable order but not 
quantifier order. While Dalia recognizes 
that c appearing before N means something 
different than N appearing before c, she 
does not attend to the order of the 
quantifiers.  

 



	
PREPRINT VERSION 
In press in PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies 

 
 

Edith: I think all four statements 
are saying different things. The 
order of the words “for all” and 
“there exists” and the order of 
the variables c and N are 
different which makes the 
statements have different 
meanings. 

Distinction in quantifier and variable 
order. Edith claims that both the order of 
“for all” and “there exists” as well as the 
order of c and N make all four statements 
different in meaning.  

  

 
These sample responses in Table 3 point out different aspects of the meaning of the order of 

quantifiers or variables, and thus may be used to facilitate a discussion of the meaning of the 

mathematical language of the statements. For instance, based on the results of the poll, an 

instructor may choose to discuss the sample student responses corresponding to highly-selected 

choices. Presenting students with a response related to a commonly chosen response may help 

students to articulate the reasons they chose the answers they did and be a means to discuss their 

reasoning more directly.  

Regardless of the incorrect response or responses chosen for discussion, we would suggest 

that an instructor always include response E in the discussion. Edith’s response may serve two 

purposes. First, for students who have not considered the order of the quantifiers or variables at 

all, Edith’s response may bring this issue to light for consideration. Second, her response may 

lead to a discussion that focuses on why the orders of the quantifiers and the variables matter in 

the statements. While the sample student responses we provide in Table 3 may represent some 

students’ thinking, we recognize that students may choose A–E for many reasons. These 

responses are not meant to exhaust all possible ways students may reason about the statements. 

Through discussing these possible responses about the meaning of these four statements, the 

ordering of the quantifiers and variables in mathematical statements may be brought to light for 

students. Once the issues of the meaning of the order of quantifiers and variables have been 
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brought up, an instructor may proceed to Task 2. While students’ attention may be drawn to such 

issues of language after working with Task 1, they may be unsure of how to resolve these issues. 

Working through Tasks 2 and 3 may provide more opportunity for students to continue to reflect 

and ultimately resolve conflicts they may be experiencing relative to the mathematical language 

of the statements. 

 
3.2 Task 2: Discussion of Graphical Representations  
 

When examining the four statements in Table 2, some students might interpret graphical 

representations differently than mathematical convention. Students’ unconventional ways of 

understanding graphs influences their understanding of the IVT and similar statements, as we 

described in Section 2.2. The goal of Task 2 is to orient students to using various graphs, as well 

as to discuss how to properly interpret outputs and points on graphs of continuous functions 

alongside the four statements in Table 2. In our study, the way in which students interpreted the 

mathematical language influenced how they understood and used graphs. For this reason, we 

suggest using this task following Task 1, so the issue of mathematical language has been raised 

for students already before Task 2.  

We split Task 2 into 3 parts: in Task 2.0, students create their own graphs, in Task 2.1, 

students consider alternate meanings for outputs and points in graphical representations with 

sample student responses, and in Task 2.2, students receive instruction on the mathematical 

meaning of points in the Cartesian plane.  

3.2.0 Task 2.0: Students Create Graphs to Explain Statement 1 
 
In the first phase of Task 2, students create graphs of various functions to describe their 

understanding of Statement 1. We suggest only focusing on Statement 1 for this portion of the 



	
PREPRINT VERSION 
In press in PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies 

 
 

task, as the way in which students interpret points on a graph likely impacts their evaluation of 

this statement, as we observed with Nate (Section 2.2). Furthermore, unlike Statements 2, 3, and 

4, the conclusion of Statement 1 holds true for some continuous function, while for others the 

conclusion of Statement 1 is false. For example, the conclusion of Statement 1 is true for an 

increasing or decreasing function (Figure 1 left), or a periodic function in which the range of 

outputs does not exceed the bounds at the endpoints (Figure 1 right). However, the conclusion of 

Statement 1 is false for a function in which the range exceeds the values between f(a) and f(b) 

(see graph in Table 4). Thus, while Statement 1 is false, students may work with multiple graphs 

and arrive at different conclusions regarding the evaluation of Statement 1. 

An instructor may encourage students to label the relevant values and points on their graphs, 

such as a, b, c, f(a), f(b), f(c), and N. If needed, an instructor might remind students of the 

hypothesis of Statement 1, namely that their graphs should be of continuous functions with f(a) 

not equal to f(b). Once students have drawn a graph of their own, students may take turns 

explaining their evaluation of Statement 1 with the graph that they drew. The instructor may 

make note of the label placement on students’ graphs, as this may indicate how students are 

interpreting points and outputs on their graphs. For instance, if a student places output labels at 

points along the graph rather than the y-axis, this may indicate that the student is thinking of 

points as solely outputs, like Nate did in Section 2.2. After students have created and shared their 

graphs, the instructor may present several graphs to the class for more opportunities for students 

to consider various graphs (e.g., graphs in Figure 1 and graph in Table 4). Once students have 

considered several types of graphs with Statement 1, the instructor may proceed to Task 2.1. 

3.2.1 Task 2.1: Students Discuss Meaning of Points on Cartesian Graph 
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Some students may consider points as a pair of input and output values while others may 

consider points as only output values, as described in Section 2.2. Thus, the goal of Task 2.1 is 

for students to discuss which meaning for outputs of functions and points on the graphs of 

functions is relevant to the four statements in Table 2. In Task 2.1, students are presented with 

the two sample student responses we provide in Table 4. The two student responses contrast the 

two interpretations of outputs and points on a graph discussed in Section 2.2. Laurel’s response 

in Table 4 indicates that she considers outputs to be locations of points on the graph and points to 

be outputs. In contrast, Victor’s response in Table 4 indicates that he interprets outputs to be 

values on the y-axis and points as ordered pairs of input and output values. 

Table 4. Sample Student Responses and Accompanying Graphs 
Sample Student Responses Sample Student Labeled Graphs 

Laurel: Here’s f(a) and here’s f(b), at 
these points on the graph. If I pick f(c), 
which is a point on the graph, it will be 
between f(a) and f(b). 
 
 
 
 
 
 
  
Victor: Here’s f(a) and here’s f(b) on the 
y-axis. If I pick f(c), which is an output here 
on the y-axis, it will not be between f(a) and 
f(b). 
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As our research indicates (see Section 2.2), some students may align themselves with 

Laurel’s response, and others may agree with Victor’s response in their interpretation of outputs 

and points on graphs of functions. Laurel places output labels at points on the graph, and she 

explains that f(c) is between the points labeled f(a) and f(b). She interprets outputs of the function 

as points on the graph, rather than as values located on the y-axis. With reasoning similar to Nate 

(see Section 2.2), Laurel explains for the c that she selects, the f(c) she labels is between f(a) and 

f(b) because f(c) is a point on the graph between the endpoints on the graph of the function. For 

Victor, however, f(c) is not between f(a) and f(b) because it is not in the range of values between 

the values f(a) and f(b) on the y-axis. Victor labels the graph with the output labels on the output 

axis, with the value of f(c) falling outside the range of values between the values of f(a) and f(b). 

Victor explains that he thinks for the c that he selects, the f(c) he labels is not a value between 

f(a) and f(b).  

An instructor may facilitate discussion through questions contrasting Laurel’s response and 

Victor’s response allowing students to discuss the differences in each of these graph labels and 

how each student is considering points on the graph. One possible discussion is as follows: 

Instructor: What is the difference in where the two students placed their label for f(c)? 
Student 1: Laurel put f(c) next to the point she picked. 
Student 2: Yeah, and Victor put f(c) on the y-axis in line with that point. 
Instructor: Yes, notice that Laurel placed the label f(c) at a point on the graph, but Victor 

placed the label f(c) on the y-axis. 
Student 3: Does it really matter? 

 
Following this discussion regarding how each student is interpreting points on the graph, an 

instructor may also discuss how each student is thinking about whether f(c) is between f(a) and 

f(b). An instructor may continue the conversation by presenting the image in Figure 3 and asking 

students whether the output at each of the indicated points is between f(a) and f(b). For students 
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who consider outputs to be points on the graph, they may respond that the output at point (1) is 

between f(a) and f(b) while the output at point (2) is not. However, students who consider output 

values at these points to be the y-coordinate may respond in the opposite way. An instructor may 

ask students to justify their reasoning regarding whether the outputs at these two points are 

between f(a) and f(b). 

 
 

 
Figure 3. Graph to discuss between f(a) and f(b) 

 
Through discussing Laurel’s and Victor’s meaning for points on a graph and whether the 

outputs at the points in Figure 3 are between f(a) and f(b), students may reflect on their meanings 

for outputs and points on a graph. In discussing these two prompts, students who had been 

thinking about f(c) as a point on the graph, rather than as a value, may begin to consider the 

alternative that f(c) represents a value represented on the output axis. Once the distinction in 

these two possible interpretations of points on a graph has been raised, even if it has not been 

resolved for some students, an instructor may proceed to the final phase of this task.  

 
3.2.2 Task 2.2: Instruction on Cartesian plane graphs 

 

(1) 

(2) 
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After discussing the two sample student responses in Table 4, some students may have 

questions about the conventions of graphing in the Cartesian plane. In particular, some students 

may still fail to distinguish points on the graph of a function and outputs of the function, or think 

of outputs as points, rather than points as representing a pair of input and output values. Because 

graphing points in the Cartesian plane follows a mathematical convention, an instructor may 

wish to propose the following image with labels for the input value, output value, and point as an 

ordered pair.  

 

 
Figure 4. Diagram of point on a graph as ordered pair 

 
The emphasis of this diagram is that a point on the graph of a function represents the 

coordination of two values simultaneously, rather than just one. The location of a point in the 

Cartesian plane is found by locating the point that is, in this case, c units to the right of the origin 

and f(c) units above the origin. Then, f(c) represents an output value along the y-axis, not the 

location of the point in the Cartesian plane. Thus, the coordinate (c, f(c)) represents the location 

of the point, uniting two values, one of the input and one of the output. After students have seen 

this diagram, they may revisit the sample responses from Laurel and Victor in 3.2.2 to decide 
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whom they agree with. By the end of this phase, students should view Victor’s reasoning as 

aligned with mathematical convention, whereas Laurel’s reasoning is not.  

 
3.3 Task 3: Re-evaluation of Statements with Graphs 
 

Now that students have been exposed to different possible interpretations of mathematical 

language, and are aware of the conventions of graphical representations of functions, they may 

benefit from re-evaluating the statements. We suggest presenting the four statements in Table 2 

again to students, along with the unlabeled versions of three graphs, the two from Figure 1 and 

the graph in Figure 4. Together, these three graphs represent a spectrum of possible continuous 

functions including a monotone increasing function (e.g., Figure 1, left), a function that is not 

one-to-one (e.g., Figure 1, right), and a function whose output values exceed the range of values 

between the endpoints’ output values (e.g., Figure 4). 

An instructor may ask students to re-evaluate each of the four statements in Table 2, using 

the graphs as examples of continuous functions to consider. Following Tasks 1 and 2, students 

may have changed the way that they think about the meaning of the order of the quantifiers and 

variables, or the meaning of points on the graph of a function. Thus, their evaluation of the four 

statements may change due to their updated meanings for the mathematical language or 

graphical representations associated with the statements. After students have re-evaluated the 

statements, instructors may ask students to work in pairs to explain to each other their 

evaluations of each of the statements using the three graphs. Following the discussions in pairs, 

an instructor may choose to re-poll students using the four options from Task 1 to check if they 

think any of the statements are the same in meaning. Through re-visiting the statements and 

evaluating them using graphs as examples, students may further reflect on their meanings for the 
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mathematical language used in each of the statements, as well as their interpretation of outputs 

and points on the graphs. The process of explaining their reasoning aloud with sample graphs 

may encourage students to further consider the role of different types of quantifiers (‘for all’ and 

‘there exists’), the order of the quantifiers, and the order of the variables in the statements. 

 
4. DISCUSSION 

 
Undergraduate Calculus curricula typically present students with many definitions and 

theorems regarding the properties of continuous functions, described using mathematical 

language and often represented with graphs. In teaching undergraduate Calculus, instructors may 

seek to provide additional support to their students in understanding the language and graphical 

representations. Findings from our research have revealed potential issues in students making 

sense of statements about real valued functions including the IVT [16]. The second issue we 

observed involved students’ unconventional interpretation of points on graphs of real valued 

functions [3]. The instructional interventions we provide in this paper are designed to combat the 

issues we observed in ways that would allow students to strengthen their meanings for 

representations first-hand. Through working with statements with differences in quantifier order 

and variable order in Table 2, students would have the opportunity to reflect on the impact these 

differences in mathematical language have on the meaning of a statement. Additionally, working 

with a pair of contrasting graph labels in Table 4 would provide students with the opportunity to 

reflect on their own meaning for outputs and points on a graph, and thus how they interpret 

graphs of functions related to statements from Calculus.  

While the tasks presented in this paper are primarily described to be used in order over 

several class periods, we envision multiple successful ways instructors may choose to implement 
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these tasks in their classes. For instance, an instructor may choose to assign Task 0 to students as 

homework to prepare for Tasks 1-3 in class. Another instructor may wish to pair Task 0 with 

Task 2.0 followed by Task 3 during one class period, and then return to Task 1 and the remainder 

of Task 2 the following class. In either case, students are given the opportunity to encounter 

differences in mathematical language and graphical interpretations firsthand, which is the overall 

purpose of these tasks as a whole. 

Supporting students in understanding representations of the IVT, both language and graphs, 

may also support students in understanding other statements from Calculus with similar 

structure, such as the Mean Value Theorem, Rolle’s Theorem, and the Extreme Value Theorem. 

In this paper, we suggest ways these tasks may be used in Calculus classes to raise and resolve 

the issues that this paper addressed. We also contend that supporting students in understanding 

the language and visual representations of mathematical statements throughout Calculus may 

improve their understanding of the concepts they communicate, as well as strengthen their 

abilities in proof and argumentation in more advanced courses. 
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