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SUBJECT-MATTER KNOWLEDGE
AND PEDAGOGICAL CONTENT KNOWLEDGE:
PROSPECTIVE SECONDARY TEACHERS
. AND THE FUNCTION CONCEPT

RUHAMA EVEN, The Weizmann Institute of Science, Rehovot, Israel

This article investigates teachers’ subject-matter knowledge and its interrelations with
pedagogical content knowledge in the context of teaching the concept of function. Dur-
ing the first phase of data collection, 152 prospective secondary teachers completed an
open-ended questionnaire concerning their knowledge about function. In the second
phase, an additional 10 prospective teachers were interviewed after responding to the
questionnaire. The analysis shows that many of the subjects did not have a modern con-
ception of function. Appreciation of the arbitrary nature of functions was missing, and
very few could explain the importance and origin of the univalence requirement. This
limited conception of function influenced the subjects’ pedagogical thinking. Therefore,
when ‘describing functions for students, many used their limited concept image and
tended not to employ modern terms. In addition, many chose to provide students with a
rule to be followed without concern for understanding.

Teachers’ subject-matter knowledge and its interrelations with pedagogi-
cal content knowledge are still very much unknown. This is due, in part, to
a change in conceptions of teachers’ subject-matter knowledge that has
taken place throughout the years. Not many years ago, teacher subject-mat-
ter knowledge was defined in quantitative terms—by the number of courses
taken in college or teachers’ scores on standardized tests (Ball, 1991; Wil-
son, Shulman, & Richert, 1987). But these “measures” are problematic,
since they do not represent teachers’ knowledge of the subject matter. In
recent years, teachers’ subject-matter knowledge has been analyzed and
approached more qualitatively, emphasizing knowledge and understanding
of facts, concepts, and principles and the ways in which they are organized,
as well as knowledge about the discipline; that is, ways to establish truth

. (Ball, 1988, 1991; Even, 1990; Kennedy, 1990; Leinhardt & Smith, 1985;

Shulman, 1986; Tamir, 1987; Wilson et al., 1987).

Another category of subject-matter-specific knowledge of teachers that
has gained greater attention in recent years is pedagogical content knowl-
edge. This kind of knowledge is described as knowing the ways of
representing and formulating the subject matter that make it comprehensible
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to others as well as understanding what makes the learning of specific top-
ics easy or difficult (Ball, 1988; Even & Markovits, in press; Lampert,
1986; Shulman, 1986, 1987; Tamir, 1987; Wilson et al., 1987).

Even though it is usually assumed that teachers’ subject-matter knowl-
edge and pedagogical content knowledge are interrelated (Ball, 1991;
Buchmann, 1984; Kennedy, 1990; Shulman, 1986, 1987; Wilson et al.,
1987), there is little research evidence to support and illustrate the relation-
ships. The study reported in this article investigates this issue in the context
of teaching the concept of function. It draws on a theoretical framework of
subject-matter knowledge for teaching mathematical concepts in general
and the function concept in particular (Even, 1990). The framework is
based on a qualitative analysis of teachers’ subject-matter knowledge of
mathematics. It consists of the following seven aspects, the first of which
is discussed in this paper: (a) essential features—what is a function?; (b)
different representations of functions; (c) alternative ways of approaching
functions; (d) the strength of the concept—the inverse function and the
composition of functions; (e) basic repertoire—functions of the high-school
curriculum; (f) different kinds of knowledge and understanding of the func-
tion concept; and (g) knowledge about mathematics. The building of the
framework is based on integrated knowledge from several bodies of work:
the role and importance of the function in the discipline of mathematics and
in the mathematics curriculum; research and theoretical work on the learn-
ing, knowledge, and understanding of functions in particular and other
mathematical concepts in general; and research and theoretical work on
teachers’ subject-matter knowledge and its role in teaching.

This article focuses on one aspect of subject-matter knowledge for teach-
ing functions, an aspect that concentrates on the essential features of the
modern concept of function. More specifically, this study addresses the
question, What are the essential features of the modern concept of function?
This concept has undergone an interesting evolution (Bennett, 1956; Bot-
tazzini, 1986; Eves, 1983; Freudenthal, 1983; Hamley, 1934; Hight, 1968;
Kleiner, 1989; Kline, 1972; Malik, 1980). Developments in mathematics
have changed the concept of function from a curve described by a motion
(17th century) to an analytic expression made up of variables and constants
representing the relation between two variables with its graph having no
“sharp corners” (18th century). Then, new discoveries and rigorization led
to the modern conception of a function as a univalent correspondence
between two sets. More formally, a function f from A to B is defined as any
subset of the Cartesian product of A and B, such that for every ac A there is
exactly one be B such that (a, b)e f.

The evolution of the function concept is sometimes described as a move
from a dynamic-dependency notion to a static-set-theoretic one (Freudenthal,
1983), or from an operational notion as a process to a structural notion as an
object (Sfard, 1991). (For an extended discussion of this issue, see Kieran, in
press.) In any case, as Freudenthal points out, two essential features of the
- modern concept of function have evolved: arbitrariness and univalence.
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The arbitrary nature of functions refers to both the relationship between
the two sets on which the function is defined and the sets themselves. The
arbitrary nature of the relationship means that functions do not have to
exhibit some regularity, be described by any specific expression or particu-
lar shaped graph. The arbitrary nature of the two sets means that functions
do not have to be defined on any specific sets of objects; in particular, the
sets do not have to be sets of numbers. Whereas the arbitrary nature of
functions is implicit in the definition of a function, the univalence require-
ment, that for each element in the domain there be only one element
(image) in the range, is stated explicitly. As the history of the development
of the concept of function shows, univalence was not required at the begin-
ning. Freudenthal (1983) attributes this requirement to the desire of
mathematicians to keep things manageable. The development of advanced
analysis created the need to deal with differentials of orders higher than one
and, therefore, to distinguish independent from dependent variables. In such
a case, it became too difficult to work with multivalued symbols, and the
univalence requirement was added to the definition of a function.

The 18th and 19th century mathematicians struggled with the idea of the
arbitrariness of functions. Interestingly, so do today’s students, even though
the concept of function is defined in today’s textbooks in a modern sense.
Several studies (Dreyfus & Eisenberg, 1983, 1987; Lovell, 1971; Markovits,
Eylon, & Bruckheimer, 1983, 1986; Marnyanskii, 1975; Thomas, 1975; Vin-
ner, 1983; Vinner & Dreyfus, 1989) found that many students do not hold a
modern conception of function (see also a discussion by Kieran, in press).
For example, many students appear to hold a linear prototypic image of
functions. Many expect graphs of functions to be “reasonable” and functions
to be representable by a formula. Students often do not include as functions
constant functions, split-domain and piecewise functions, or functions
obtained by composition. In general, the findings point to a limited view of
functions, caused by students having some specific expectations about func-
tions and their behavior. Surprisingly, Vinner and Dreyfus (Vinner, 1983;
Vinner & Dreyfus, 1989) found that this was the case even when students
were able to provide a correct modern definition. In other words, defining a
function in modern terms did not necessarily reflect a modern concept
image' of a function. The inconsistent behavior described by Vinner and
Dreyfus is a specific case of the compartmentalization phenomenon
described in Vinner, Hershkowitz, and Bruckheimer (1981). This phenome-
non occurs when a person has conflicting schemes in his or her cognitive
structure. Different situations.stimulate different schemes, and the person
appears to behave either inconsistently or in an irrelevant way.

'The term “concept image” is taken from Vinner (Vinner, 1983; Vinner & Dreyfus, 1989),
who defines concept image as the mental picture of the concept (i.e., the set of all “pictures”
that have ever been associated with the concept in the person’s mind) together with the set of
properties associated with the concept (in the person’s mind). This concept image can clearly
differ from person to person.
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Since the process of learning is influenced by the teacher, it is therefore
important to understand how teachers explain what a function is to students,
what they emphasize and what they do not; and what ways they choose to
help students understand. Teachers’ pedagogical content knowledge is
influenced by their subject-matter knowledge. However, the interrelations
between the two are still very much unknown. This study investigates the
interrelations between teachers’ content knowledge and pedagogical content
knowledge related to two essential features of the concept of function, arbi-
trariness, and univalence. The study reported in this paper is part of a larger
study of different aspects of prospective secondary mathematics teachers’
knowledge and understanding about functions (Even, 1989).

METHODOLOGY

Subjects
General Background

The participants in this study were 162 prospective secondary mathematics
teachers in the last stage of their formal preservice preparation. The subjects
came from eight midwestern universities in the United States. Five are large
universities with extensive teacher education programs; the other three are
state universities, previously teacher colleges, with an emphasis on teacher
education. One hundred and fifty-two subjects from seven of the universities
participated in the first phase of the study, in which they were administered a
questionnaire. Ten subjects from two universities participated in the second
phase, in which they completed the same questionnaire and were interviewed
in depth. The first-phase subjects were students enrolled in mathematics
methods classes (i.e., mathematics pedagogy classes) in which the instruc-
tors were willing to devote one hour of class time to administering
questionnaires to their students. All students who were present on the day of
questionnaire administration were included. Since the development of the
interview for the second phase was based, in part, on an analysis of the first-
phase data, second-phase subjects were not chosen from among the
first-phase subjects. However, an attempt was made to select second-phase
subjects who were similar to first-phase subjects with respect to sex, age,
academic background, and grades. In general, most subjects were in their
early 20’s, and were equally distributed by gender.

Academic Background

The subjects had completed most of the required mathematics course-
work. About one-third of the first-phase subjects and two-thirds of the
second-phase had taken an advanced calculus course. All first-phase sub-
jects and three second-phase subjects were enrolled in the required
mathematics methods course during this study; seven subjects from the sec-
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ond phase had already completed it. More than two-thirds of the subjects
had had some field experience, usually pre—student teaching in the first
phase and student teaching in the second. Thus, an average second-phase
subject had somewhat stronger mathematics and teaching background than
an average first-phase subject, having taken an advanced calculus course
and engaged in student teaching. Almost all the participants were seniors; a
few were juniors or postbaccalaureate students. Therefore, what these
prospective teachers knew, and the ways in which they thought, reflected
the knowledge they had developed by the end of their formal mathematical
study but before they had begun their teaching careers.

Instrumentation

Rationale

As noted earlier, this study had two phases. The first phase of the study
aimed at getting a general picture of the prospective teachers’ subject-mat-
ter knowledge and pedagogical content knowledge. The second phase aimed
at clarifying this picture and adding more details. The instruments used
were a questionnaire for the first phase and the same questionnaire and an
interview for the second phase. The same questionnaire was used for both
phases in order to enable us to generalize the findings from the second
phase by comparing the answers to the questionnaires in both phases. Prob-
ing during the interview was designed to give a more accurate and detailed
picture of the subjects’ subject-matter content knowledge and pedagogical
content knowledge. The probing focused on asking subjects to explain what
they did on the questionnaire and why, asking for their reactions as teachers
to students’ misconceptions, and asking questions related to the question-
naire but requiring more general, longer, or more thoughtful responses. In
this manner, the interview was used to clarify answers to the questionnaire
and at the same time as an instrument to gather information on questions
that were too difficult to answer via a written questionnaire. Both question-
naire and interview were specifically developed for this study.

Questionnaire

The questionnaire included two types of items: nine nonstandard prob-
lems addressing the different aspects of teachers’ subject-matter knowledge
about functions, and “students’” mistaken solutions or misunderstandings to
be analyzed or responded to (6 items). Both types of items were based on
students’ limited conceptions and mistakes as described in the literature or
known from the author’s personal experience with students. The focus of
this paper—the essential features of the concept of function: arbitrariness
and univalence—was mainly addressed in the four items given in Figure 1
but was touched on, to some degree, by all the items in the questionnaire.




a) Give a definition of a function.
b) A student says that he/she does not understand this definition.
Give an alternate version that might help the student understand.
2. How are functions and equations related to each other ?
3. A student is asked to give an example of a graph of a function that '
passes through the points A and B (See Fig. 1).
The student gives the following answer (See Fig. 2).

Figure 1 Figure 2

When asked if there is another answer the student says: “No”.
- If you think the student is right—explain why.
- If you think the student is wrong—how many functions which
satisfy the condition can you find? Explain.
4. A student marked all the following as non-functions. (R is the set of all
the real numbers, N is the set of all the natural numbers).
(i) (i f:R—>R (iig:N—>R
f(x)=4
y A

NS

o
/Jr >X

(iv) A correspondence that associates 1 with each positive number,
. —1 with each negative number, and 3 with zero.

x, if xis a rational number
(v) 9(x) = {O if xis an irrational number.
(vi) {(1,4), (2,5), (3,9)}

a) For each case decide whether the student was right or wrong.
Give reasons for each one of your decisions.

(i) Right/wrong because (i) Right/wrong because
(iii) Right/wrong because (iv) Right/wrong because
(v) Right/wrong because (vi) Right/wrong because

b) In cases where you think the student was wrong, try to explain
what the student was thinking that could cause the mistake.

Figure I. Examples of questionnaire items.
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Interview

The interview consisted of two parts. In the first part subjects were pre-
sented with items that required more general, longer, and more thoughtful
responses than those of the questionnaire, as well as items that needed a
flexible structure that only an interview can provide (see examples related to
the focus of this paper in Figure 2). Also included were items about issues
that emerged as important after analysis of the first-phase questionnaires. An
issue was considered important if a relatively large number of subjects
referred to it and it had a high degree of relevance to the learning and teach-
ing of functions. For example, almost no one mentioned the vertical line test
in response to the first part of Question 1 (Figure 1), whereas it was used
frequently in the second part. Hence we included Question 2 in Figure 2 in
the interview. This example is discussed in detail in the results section.

1. Give an example of a function.

2. Is it important to teach the vertical line test for graphs of functions to
students?
Why?
(What is the line test? What would you teach to your students? How
would you teach it? Can you give me an example?)

3. When asked to draw a graph of a function that passes through the
points A, B and C, a student gave the following answer:
What do you think about this answer?

~al
>—B

T

(Is it correct? Why?

- If “yes”—Is there any other correct answer? Give me an
example. Can you find another one? Why do you think the student
gave this answer?

- If “no”"—What would you like to see as a correct answer? Give me
an example. Another one. Why do you think the student gave this
answer?)

Figure 2. Examples of interview items.

In the second part of the interview the interviewees were asked to reflect
on their thinking and to explain and clarify their answers to the question-
naire. In addition to their free, voluntary explanations, the interviewees
were also probed uniformly and nonuniformly. The uniform probes were

B L T Y o W
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presented to all subjects and were based on the analysis of the first-phase
questionnaires. These probes represented themes that appeared in many of
the written answers (such as arbitrary versus specific functions) and were
meant to clarify ambiguities (such as the meaning of “many”—finite or infi-
nite). The uniform probing also included presentations of ideas and
misconceptions that were found in answers of the first-phase question-
naires, asking the subjects first to relate and evaluate them and then to
explain what they think the “student” had in mind when he or she answered
that way (see examples of probing in Figure 3). The nonuniform probing
was based on the specific answers each subject gave to the questionnaire
and was meant to clarify ambiguous answers and discover specific dimen-
sions that seemed important.

(1) - What did you assume the student didn’t understand?
- Why is there, in the definition of functions, the requirement of
having only one image for each element in the domain?

(2) - Are all functions equations? What do you mean?
- Are all equations functions? What do you mean?
- Can all functions be represented by an algebraic expression?
a formula?

(3) - How many functions? (Can you give me some examples? More?
Anything else?)
- How do you know that there is an infinite number of functions?

(4) - Do you think that there is a formula to describe the graph in (i)?
- Can you graph (v)?
- Many students said that (vi) is just a set of points and not a
function; others said that it is not a function since 3 should go with 6.
What do you think?

aNumbers in parentheses refer to the items given in Figure 1.

Figure 3. Examples of interview probing on the questionnaire.

Since the process of reflection that takes place during an interview causes
learning (e.g., Confrey, 1987), questions that did not appear on the ques-
tionnaire were used before the discussion of the answered questionnaire.
Nevertheless, the first item of the questionnaire that dealt with the defini-
tion of a function (Item 1, Figure 1), was discussed at the very end of the
interview in order to eliminate its influence on the rest of the items.

Procedures

Data collection for this study was conducted from November 1987 to
April 1988. The administration of the first-phase questionnaires took place
in the regular mathematics methods class by the regular instructor of that
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class. Data collection for the second phase took place on two consecutive
days. Each of the 10 subjects answered the questionnaire on one day and
was interviewed the next day. This was done so that the subjects could easi-
ly recall their answers to the questionnaire and the reasoning behind them.
The researcher administered the questionnaires and conducted the inter-
views in the second phase.

Subjects were not allowed to use any resources and had about an hour to
complete the questionnaire. Interviews took about two hours each. Probing
was an important component of the interview procedure. Some of the probes
were standard—"“Why?” “What do you mean by that?”’ and “Can you give
me an example?” There were also times when the probes were specific to the
given situation. The interview sessions were audiotaped and transcribed.

Data Analysis

Questionnaire

The analysis began by surveying about 40 questionnaires—a few from
each of the seven first-phase universities—in order to gain an impression of
the responses. This analysis led to the creation of preliminary categories of
responses for each question and subquestion. An attempt was made to avoid
imposing any preconceptions of what the answers might or should have
been, in order fo present as accurate a picture as possible of the different
answers and to be open to unexpected directions.

These preliminary categories were then examined and modified after con-
sulting experts in mathematics education. Similar categories were
combined, and new categories that were considered important according to
what was known about students’ difficulties and limited conceptions of
function were added. At the end of this process, each of the questions and
subquestions of the questionnaire had a list of modified categories related
both to the answers and the procedures used to obtain those answers and to
themes that emerged from the different aspects of subject matter knowledge
for teaching (Even, 1990).

After refinement, the final categories were used to analyze all the ques-
tionnaires. No attempt was made to reduce the number of categories at this
stage, but rather category reduction was postponed until viewing the prelim-
inary results. Experts in mathematics education were also consulted both at
this stage and when faced with problematic cases. When there was disagree-
ment about the categorization of the problematic cases, a discussion with
several experts took place until agreement was achieved. In many cases an
answer was categorized several times: by the final answer, by the method
used to get that answer, by attention given to important issues (in relation to
the different aspects of subject-matter knowledge), or by common issues (to
many of the questionnaires).

I
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Interviews

The interviews were transcribed in order to insure easy access to the data.
The analysis began by listening to the taped interviews and editing the tran-
scripts. Then, the interview transcripts were analyzed by person, by
question, and by theme in the following manner. First, each person’s answer
to an interview question was summarized and significant comments were
recorded. Then, a summary table for each interview question was created
across subjects. Attention was given to several dimensions, such as the final
answer, the method used to get that answer, mistakes made, ideas, prefer-
ences, ways of evaluating students’ mistakes, and other significant
comments. The above analyses were used for thematic analysis. The themes
correspond to the subject-matter knowledge and pedagogical content knowl-
edge aspects being studied.

RESULTS

The results reported here are results related to teacher subject-matter
knowledge and pedagogical content knowledge with regard to arbitrariness
and univalence. Arbitrariness is examined by referring to the arbitrary
nature of the relationship between the two sets, which seems to be more cru-
cial to teacher understanding of functions than arbitrariness of the sets. This
section includes results of the analysis of data from both the first and the
second phase of the study. The interview data are used to complete and clar-
ify the questionnaire data as well as highlight new issues. For each feature
(arbitrariness and univalence) the subjects’ pedagogical content—specific
choices are described and a comprehensive analysis of their related subject-
matter knowledge is given. An illustrative case of the compartmentalization
phenomenon is also included in the results section. Interpretations of the
teachers’ subject-matter knowledge and consequences to pedagogical con-
tent—specific choices are discussed in the discussion section.

Arbitrariness

The participants’ definitions (or explanations) of a function (Item 1, Fig-
ure 1) were categorized as “modern” if there seemed to be some reference
to the arbitrary nature of functions. (Correctness and accuracy of the defini-
tions were not evaluated in the process of categorization.) For example: “A
function is a set of ordered pairs (x, y) that have different x values but may
or may not have the same y value.” (Quotations from the questionnaires are
reported in plain text; quotations from the interview are set off in dialog
format.) Subjects’ definitions were categorized as “old” if some regularity
of the function behavior was included. For instance, “A function is a rela-

tionship between coordinates that meets certain requirements of
smoothness, and....”
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In Item 1 (Figure 1) the subjects were asked to give first a definition of a
function and then an alternate version that might help a student with diffi-
culties. Table 1 summarizes the function definitions that were given by the
first-phase subjects, both with and without reference to a student. The rela-
tively large number of 36 “others” in the “function definition for students”
category is mostly due to subjects who did not give a definition or descrip-
tion of a function, but rather gave the student a rule to follow, such as the
vertical line test. This issue is discussed in detail later in this article.

Table 1
Distribution of Function Definitions and Function Definitions for Students

Modern Old Other N/R Total
Function definition
without reference to a student 78 53 11 10 152
Function definition
with reference to a student 27 67 36 22 152

Note. N/R = No response.

Pedagogical Content Knowledge: Defining a Function for Students

Table 1 shows that many prospective teachers who used modern terms
when defining a function did not do so when approaching a student with

. difficulties. For example, Valerie defined a function as “a 1-1 mapping of a

set of points X onto Y.” But for the student, she did not use the term “map-
ping” and defined a function as an operation, which implies a
nonarbitrariness characteristic: “You take a group of numbers. You perform
some operation on the numbers (such as multiplying, etc.). This gives you a
second group of numbers. The operation you did is called a function.” In
her interview, Valerie explained that she changed her definition for the stu-
dent, since she assumed a student would not understand what a mapping is
and would thus not be able to understand what she was talking about.

Subject Matter Knowledge: Conceptions of Arbitrariness

Three trends were detected in the subjects’ responses: (1) functions are
(or can always be represented as) equations or formulas, (2) graphs of func-
tions should be “nice,” and (3) functions are “known.” These trends are
described in the following.

Functions are equations and can always be represented by formulas. A
large group of participants (33 of 53) whose definitions of a function (Item
1, Figure 1) were categorized into the old (specific) category defined a
function as an equation, an algebraic expression, or a formula. For example,
one subject wrote, “A function is an equation with a one-to-one correspon-
dence between the variables.” Another teacher candidate stated, “A function
1s a numerical expression that....”
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All responses included in this category explicitly used one or another of
the words “equation,” “algebraic (numerical) expression,” or “formula.”
However, even those who did not define a function as an equation may
have been conceiving a function that way. This became apparent from the
answers to Item 2 (Figure 1). When asked to describe the relationship
between functions and equations, an additional 26 subjects (of the 33 who
defined a function as an equation, formula, or expression in Item 1) said
that functions are equations, or that rules for functions are equations (with-
out any additional remarks that some functions may not be representable by
equations). For example, one subject claimed, “They’re the same thing.”
Another wrote, “A function is really an equation.”

Although one may claim that describing functions as equations does not
necessarily mean that formulas or expressions are involved, the interviews
clarified that the subjects used the term “equations” to describe functions
that are represented by an expression. Seven (of ten) second-phase subjects
expressed the belief that all functions can be represented by using a formu-
la. For example,

Bob: Yes, I think you could write all functions in terms of equations. It might be a
trigonometric equation, like sin x, but in every term the y value is going to be
equal to some operation with x value.

Researcher: So you can always describe a function using a formula or an equation?

Bob: I think so.

Altogether, about half the participants (who responded to both Items 1 and '

2, Figure 1) showed signs of having equations as the dominant component
of their concept image of functions. This tendency was also apparent from
the examples of functions that the second-phase subjects gave during the
interview (Item 1, Figure 2): eight out of ten started with algebraic expres-
sions. They seemed to think of equations as the “real” functions.

Graphs of functions should be “nice.” Some of the prospective teachers
expected graphs of functions to be “nice” and smooth. Seven explicitly
included such a requirement in the definition. For instance: “A function is a
relationship between coordinates that meets certain requirements of smooth-
ness, and....” Usually, however, the expectation that graphs of functions
should be “nice” became apparent when the participant was faced with
other situations. For example, when having to decide whether the following
is a function (Item 4v, Figure 1),

x, if x 1s a rational number

8(x) = { 0, if x i1s an irrational number.

Brian justified his decision that it is a function by stating, “There is an
assignment of a single value to each number.” Later, when he sketched the
graph during the interview, he got a few points on the x-axis for irrational
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numbers: T, 7 [sic], \/13; and a diagonal line y = x with “holes” in it (see
4

Figure 4).

Figure 4. Brian’s graph.

At this point he had a hard time deciding whether this graph is the graph
of a function.

Brian: 1 don’t know if it’s a function. It fits the criteria of mapping, but it does not look
pretty. It’s not really graphable. It might just not be. But this 1s a discontinuous func-
tion. You’'re allowed to do discontinuous. There aren’t sharp points. Oh,
well...[shrugged his shoulders, could not make up his mind whether it was a function].

Another kind of “niceness” expectation that was confused with continuity
in some peculiar way was not to have “sharp points” or “sharp corners” in a
graph. Tracy illustrates this point in her response to Item 3 (Figure 2):

But it’s not continuous at the point B. So the function is not continuous, so it’s
not a function. Plus, it does not pass the vertical line test either. So, it’s two
points that, you know, make it fail being a function.?

It is clear from the data that at least 18 first-phase subjects expected graphs
of functions to be continuous, as evidenced by their decision that the graph in
Item 4i (Figure 1) is not a function because it is not continuous. It is not clear
how many were willing to accept discontinuous graphs but still expected
graphs not to be “too weird” or have “sharp corners,” since only the inter-
view data, which was limited to ten subjects, provided this information.

2This confusion between continuous and differentiable functions is stmilar to the debate
about functions and continuous functions during the 18th century (Kline, 1972). At that time,
only differentiable functions were accepted as functions. Later, continuous (in the modern
sense) but nondifferentiable functions were also accepted. Those functions were called discon-
tinuous functions, referring not to discontinuity in the graph but rather to “discontinuity” in the
expression that described the graph (several expressions instead of only one).
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Functions are “known.” When asked how many functions can pass
through two given points (Item 3, Figure 1), most of the participants respond-
ed that there are infinitely many such functions. Only 12 subjects said that
the number of functions is finite. However, many of those who said that the
number of functions is infinite explained it by referring to specific examples
of functions (which was sufficient to answer the question). They did not use
the arbitrariness characteristic of functions. For example, one subject wrote
“There are infinite parabolas that would satisfy the conditions.”

Table 2 summarizes the answers of the first-phase subjects by the number
of functions they thought could go through two points and by their explana-
tion of their choice (i.e., whether they referred to arbitrary functions or used
specific examples of functions only in their explanation).

Table 2
Distribution of Answers by the Number and Kinds of Functions
That Can Pass Through Two Points

Infinite Finite N/R Total
" Arbitrary 35 0 5 40
Specific 25 12 20 57
N/R 41 0 14 55
Total 101 12 39 152

Note. N/R = No response.

Giving specific examples (especially an infinite family, such as the
parabolas above) without referring to arbitrary functions does not necessari-
ly mean that the person is not aware of this aspect of functions. In order to
investigate this further, the second-phase subjects were asked during the
interview how many functions can pass through three noncollinear points
and were probed more about both questions. The results revealed three dif-
ferent kinds of answers.

Some claimed that only a finite number of specific functions pass through
two or three given points. Brian’s answer illustrates this. He found two graphs
that pass through the two given points, and on the basis of that, he said,

I would guess just four. Just from the inference that I know two, there may be a
few [more] out there.

Others said that there are infinitely many specific functions that pass
through two or three points. This is illustrated by Bert’s answer, in which
he suggested different parabolas. Even after being pressed during the inter-
view to find more functions, he did not come up with any. Some people
found a broader class of functions and suggested, for example, an infinite
number of polynomials. But again, when asked if there are other functions
that may work, they said that they could not think of any. This kind of
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answer seems to indicate a belief that functions have specific names or
shapes or are somehow “known” to be functions. By saying that they could
not think of any other function, the participants seemed to say that there
was not any other function krnown to them.

The third group of participants said that there are infinitely many arbi-
trary functions that pass through two or three points. Huey illustrates this
by describing how, by free drawing, he can get infinitely many functions.

Huey: Really any function value, anything that is a function....Infinite, because I
could just draw a million curves.

Researcher: Do you have names for all these curves? Are those specific curves?

Huey: No, there’s no specific names. You couldn’t even write equations for all of
them that would satisfy...but certainly for some of them, like parabolas.

Most subjects answered the same way in both the two- and the three-point
cases. But Brian, who started with a finite number of specific functions in
the first case, changed his answer in the second case and said that the num-
ber of functions can be infinite: an infinity of parabolas and some other
specific examples.

Univalence
Pedagogical Content Knowledge: The Vertical Line Test

While only 3 first-phase subjects (of the 142 who responded to Item 1,
Figure 1) used the “vertical line test” in their definition of a function, 26
used it as an explanation for students, usually without explaining what a
function is but only giving the student a test. For example: “By graphing the
function and doing the vertical line test, a line never crosses the graph more
than once.”

A tendency to provide the student with the “vertical line test” as a rule
that the student can follow and get the right answers (without needing to
understand) was revealed during the interviews. The following excerpt
illustrates this.

If they’re told to figure out whether it’s a function or not, using the definition,
they probably wouldn’t be able to do it. If they know the vertical line test
works, even if they don’t know why it works, they can see right away why this
is a function, because they can go through with a ruler or a straightedge and
vertically go across the function, looking for places where there are two points.

The interviews also revealed that the “vertical line test” was chosen by
the subjects because it was commonly used by their teachers when functions
were taught. This is illustrated by the following excerpt:

I’'m sure everybody learns the same rule in high school. That you can draw a
vertical line through the graph. And if it only intersects the graph at one point,
then it’s a function. If it intersects at more than one point, it is not a function.
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Subject Matter Knowledge: Knowing How and Knowing Why

Familiarity with univalence. About half of the first-phase and almost all
of the second-phase subjects included this requirement in their definition of
a function. For example, “A function is a relation such that a number in the
domain can only be matched to one number in the range.” Six stated it
backwards (i.e., for each element in the range there is only one element in
the domain).

Between one-third and one-half of the participants used the univaience
requirement as a criterion for checking whether given mathematical objects
(Item 4, Figure 1) were functions. (The other methods used were based on a
limited concept image of functions, such as discontinuity or familiarity with
the specific function at hand; e.g., “This is a constant function.”)

Why univalence? The interviews revealed that the univalence property
was considered to be a very important characteristic of functions by the
prospective teachers. But when asked during the interview to explain the
importance of univalence, the subjects gave two kinds of immediate
responses that showed that they did not really know. Eight subjects simply
stated, “I don’t know.” Two subjects claimed that the role of univalence is
to distinguish between relations and functions.

After being pressed to think of an explanation for this requirement (Why
is it important to distinguish between functions and relations?), six subjects
provided a greater variety of answers. Three tried to use everyday life, engi-
neering, or science as the source of this requirement, making no connection
to pure mathematics. They claimed that in those areas, in many cases, there
was a need to have a single definite answer. Another three thought that the
importance of the requirement was rooted in mathematics. Valerie was the
only one who came close to the historical explanation of keeping things
manageable.

I suppose it makes it easier for all the other things you do, like for finding
inverses, you’d have a more difficult time with it otherwise, probably.

Bert, who also thought that the univalence requirement came from mathe-
matics, described the origin of the requirement as arbitrary.

It seems like that would be, whoever decided to call that a function just made it
one of the requirements. I would just think, that would be, whoever decided to
call it a function just decided: if it looks like a graph, like this, and has only
one, and I’'m going to call that a function.

Brian’s Case: Arbitrariness and Univalence

Brian’s case illustrates the compartmentalization phenomenon. Brian’s
apparently conflicting schemes about arbitrariness and univalence resulted
in inconsistent behavior as described in the following.
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At first, it seemed that Brian understood the univalence requirement. He
used it in his definition of a function (the emphases in the following quota-
tions were added): “A thing which maps every element in a domain set onto
another unique element in the range set.” When asked to give an alternate
version of this definition for a student who does not understand it, he also
emphasized the univalence requirement: “For every number you put into a
function you get only one number back out.”

In addition to memorizing it, Brian used the univalence requirement cor-
rectly to decide whether objects were functions. For example, he decided
that the following (Item 4v, Figure 1),

x, if x is a rational number

80 =1 0, if x is an irrational number,

is a function because “There is an assignment of a single value to each
number.” He also used the “vertical line test” to support his decision to
accept a given graph (see Item 4i, Figure 1) as a function.

The first crack in this “ideal picture” occurred when Brian was asked dur-
ing the interview to explain the “vertical line test,” which he referred to as
important to teach to students. He said,

Like if I was going to have....Well. Uh, a circle is a function, but a circle doesn’t
pass the line test.

As the interview continued, he ignored the contradiction and continued to
talk about the use of the “vertical line test” for deciding whether something
is a function. Later, he was asked if he would accept the graph in Item 3
(Figure 2) as a function. The contradiction arose again:

It doesn’t pass the vertical line test, but a lot of functions don’t do that.

Brian was asked to give an example of a function that passes through the
three points A, B, and C. He sketched a graph of a function and said,

It would pass the vertical line test.

Brian, as we saw earlier, could not decide whether a “weird looking”
graph is a function, even though it satisfies the univalence requirement. At
the same time, he accepted a circle as a function, although it does not satis-
fy univalence. In other words, for Brian the univalence property was neither
a necessary nor a sufficient condition for a function.

Interestingly, Brian did not ignore the property as a few other subjects
did. He used univalence to decide whether a given object is a function on
several occasions, while at other times he accepted as functions relations
that do not satisfy univalence. Brian’s inconsistent behavior might be
explained by conflicting schemes in his cognitive structure that were stimu-
lated by different situations. At the end of the interview he admitted that he
did not understand the use of univalence and claimed that it helps to under-
stand what a function is when one first begins to study functions.
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It makes it a lot clearer up to a point. I’ve never been able to get it right in my
own brain as to what it exactly is supposed to be. A function, well, early on it’s
a good idea to have one-to-one correspondence. Because really it’s easy to see
“that’s a function,” “that’s not a function.” Or to get the idea, it relates the idea
of a function to an equation really well. But when you start moving out into
concepts like cause-effect or things like that, it tends to break down. Like I
have a problem trying to make an ellipse and call it a function based on my def-
inition.

It’s great for the vertical line test. For linear functions it’s perfect. For some oth-
ers—quadratic—it’s beautiful. But it just breaks down in a certain point. It
works for linear functions. That’s what it’s there for. I think it’s an over-general-
ized tool.

DISCUSSION
Arbitrariness

Many of the prospective teachers in this study did not hold a modern con-
ception of functions. Rather, their conceptions were similar to students’
conceptions as described in the literature (Dreyfus & Eisenberg, 1983,
1987; Lovell, 1971; Markovits et al., 1983, 1986; Marnyanskii, 1975;
Thomas, 1975; Vinner, 1983; Vinner & Dreyfus, 1989). The subjects had
specific expectations about functions and their behavior; for example, func-
tions are (or can always be represented as) equations or formulas, graphs of
functions should be “nice” (“weirdness” is subjective, of course), and func-
tions are “known.” In addition to the rejection of unfamiliar functions, there
were also cases of using familiarity as a criterion of accepting nonfunctions
as functions (this phenomenon is also described in Bakar & Tall, 1991). It
seems that having a concept image of functions as equations with “nice”
graphs made it “reasonable” to accept, for instance, the familiar circles and
ellipses as functions.

An interesting finding of this study indicates that even though results of
other studies (Markovits et al., 1983, 1986) might seem to imply that those
who know that an infinite number of functions can pass through two or
three points have better understanding about the arbitrary nature of func-
tions than those who do not, there may not be such a big difference between
the two. The ease with which a subject changed her or his answer from a
finite number of specific functions in the two-point case to an infinite num-
ber of specific functions in the three-point case seems to indicate that the
biggest difference lies between those who understand the arbitrariness char-
acteristic of functions and those who do not, between those who expect
functions to have specific names or shapes and those who do not.

Knowledge is derived from experience. It is not passively received but
rather actively built up (von Glasersfeld, 1990). Therefore, students’ con-
cept image is determined by the functions they work with and not by the
modern definition of a function that is presented to them, as several studies
show (Bakar & Tall, 1991; Malik, 1980; Vinner, 1983; Vinner & Dreyfus,
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'1989). It seems that this was also the case with the subjects in this study.

Most of the functions that prospective secondary mathematics teachers
encounter during their mathematics courses are the kind that have a “nice”
graph and can be described by an expression. The need for arbitrariness
arises in only one mathematics course in preservice education—advanced
calculus. But as the results of this study show, such brief experience is not
enough—even subjects who have taken this course did not have a modern
concept of a function. Therefore, it should not surprise us that when
describing what a function is for students, many subjects chose to use their
concept image and tended not to employ modern terms. So even if the deci-
sion not to use a modern definition for students might seem a good
pedagogical decision, it should be attributed to the incomplete concept
image of a function that many of the prospective teachers hold and not nec-
essarily to mature pedagogical reasoning.

Univalence

Univalence is usually presented to students as one of the most important
characteristics of functions, and this is what many of the subjects thought.
They knew that it distinguishes between relations that are not functions and
those that are. But without prompting, none of the subjects could come up
with a reasonable explanation for the need of univalence. Even after
prompting, most did not know why it is important to distinguish between
functions and nonfunctions. These results should not surprise us because
most textbooks (e.g., Coxford & Payne, 1987; Dolciani, Sorgenfrey, Brown,
& Kane, 1986; Keedy, Bittinger, Smith, & Orfan, 1986; Nichols et al.,
1986), and therefore, we may assume, many teachers, do not provide stu-
dents with examples or activities that would help them understand what one
can do with functions that one cannot do with relations that are not func-
tions. Also, it is possible, perhaps likely, that many teachers, as well as
teachers of teachers, do not explicitly know (or never thought about) the
need for this requirement.

Not knowing why univalence is needed may influence pedagogical con-
tent-specific choices, by making it “reasonable” to present students with
easy procedures that overemphasize procedural knowledge without concern
for meaning. This is exactly what many of the prospective teachers in this
study did when choosing to provide students with the “vertical line test” as a
rule to follow and get the right answers without concern for understanding.

CONCLUSION

A situation in which secondary teachers at the end of the 20th century
have a limited concept image of function similar to the one from the 18th
century is problematic. Based on a constructivist approach to learning, the
teacher’s main function, as Noddings (1990) and Confrey (1990) state it, is
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to establish mathematical environments that encourage exploration and
strong acts of construction, environments in which students are encouraged
to explore and raise questions (as is advocated also by the National Council
of Teachers of Mathematics, 1991). When doing so, teachers may be put in
situations where they have to deal with unfamiliar instances. Their peda-
gogical decisions—questions they ask, activities they design, students’
suggestions they follow—are based, in part, on their subject-matter knowl-
edge. Therefore, it is important that teachers develop a modern concept
image of function.

In addition to the pedagogical arguments described above, there are also
cultural arguments. The concept of function has changed over the years, not
because someone arbitrarily decided to make changes, but rather because
new knowledge in mathematics created the need for those changes. New
developments created new branches of mathematics that also led to changes
in the definitions. Mathematics teachers who are constrained by their limit-
ed and underdeveloped concept image may also be prevented from
understanding current mathematics that is based on a more modern concep-
tion of functions. This situation may contribute to the cycle of discrepancies
between concept definition and concept image of functions in students,
keeping the students’ concept image of a function similar to the one in the
18th century.

Still, having a modern concept image of functions is not sufficient. Teach-
ers need to know, for example, why there is a need for univalence in the
definition. Being familiar with the historical development of functions may
help because it explains why functions came to be defined the way they are
today and thus gives meaning to the definition. Having a meaningful under-
standing of the mathematical need of univalence can help teachers make
knowledgeable decisions about the place of the concept of function in the
curriculum and the emphasis they should put on the univalence requirement.

One immediate conclusion of this study is that an important step in
improving teaching should be better subject-matter preparation for teachers.
However, better subject-matter preparation does not mean changing the
number of courses prospective teachers must take. Instead, mathematics
courses should be constructed differently, in line with the constructivist
views on teaching and learning (e.g., Confrey, 1990), so thait better, more
comprehensive and articulated understanding and knowledge of functions
(and mathematics) is developed. Teachers need to have learning environ-
ments that foster powerful constructions of mathematical concepts.
Unfortunately, the present mathematics courses teachers typically experi-
ence do not provide such an environment.

Good subject-matter preparation for teachers is necessary but not suffi-
cient. Teachers tend to follow their own teachers’ footsteps (Ball &
McDiarmid, 1990) unless they have developed a different repertoire of
teaching skills. This was illustrated in this study by the subjects’ choice of
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the “vertical line test” as a representation of a function they would use as
teachers. Developing a powerful teaching repertoire is part of pedagogical
reasoning—the process of transforming subject-matter knowledge into
forms that are pedagogically powerful (Shulman, 1987)—and depends, in
addition to strengthening subject-matter knowledge, on the integration of
different domains of knowledge (Ball, 1988). Therefore, a good content-
specific pedagogical preparation is also needed.

A powerful content-specific pedagogical preparation based on meaningful
and comprehensive subject-matter knowledge would enable teachers to
teach in the spirit envisioned in the Professional Standards for Teaching
Mathematics (NCTM, 1991). Teachers with this sort of preparation would
be able to create learning environments for their students that foster the
development of students’ mathematical power. They would also be prepared
to pose tasks for their students that are based on sound and significant
mathematics and to help students develop a coherent framework for their
mathematical 1deas.
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